ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • Earth Resources and Remote Sensing  (4)
  • Electronics and Electrical Engineering  (1)
  • 2005-2009
  • 1995-1999  (5)
  • 1998  (5)
  • 1
    Publication Date: 2004-12-03
    Description: The Southern Great Plains 1997 (SGP97) field experiment was conducted in Oklahoma during June-July 1997 to validate the models used for computing remote soil moisture using measurements by microwave radiometers. One of the objectives of SGP97 was to examine the effect of soil moisture on the evolution of the Atmospheric Boundary Layer (ABL) and clouds over the Southern Great Plains (SGP) during the warm season. The LASE (Lidar Atmospheric Sensing Experiment) airborne DIAL (Differential Absorption Lidar) system, which was flown autonomously on the NASA ER-2 aircraft during previous missions, was reconfigured to fly on the NASA P3 research aircraft. During SGP97 LASE was used to study the morning evolution of the ABL, particularly as manifested in the development of the convective boundary layer, and to study the influence of soil moisture variations on the development of ABL. The ABL development is strongly influenced by the surface energy budget, which is in turn influenced by soil moisture, mesoscale meteorology, clouds, and solar insolation. LASE data acquired during this mission are being used to study the ABL water vapor budget, the development of the ABL, spatial and temporal variabilities in the ABL, and the meteorological factors that influence the ABL development. This field experiment also permitted comparisons of LASE water vapor measurements with water vapor profiles acquired by radiosondes launched at the DOE (Department of Energy) Atmospheric Radiation Measurement (ARM) Southern Great Plain (SGP) site and at NASA/Wallops Flight Facility, as well as with measurements from other SGP97 aircraft.
    Keywords: Earth Resources and Remote Sensing
    Type: Nineteenth International Laser Radar Conference; 261-264; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: This paper addresses the accuracy of radiation-induced upset-rate predictions in space using the results of ground-based measurements together with standard environmental and device models. The study is focused on two part types - 16 Mb NEC DRAM's (UPD4216) and 1 Kb SRAM's (AMD93L422) - both of which are currently in space on board the Microelectronics and Photonics Test Bed (MPTB). To date, ground-based measurements of proton-induced single event upset (SEM cross sections as a function of energy have been obtained and combined with models of the proton environment to predict proton-induced error rates in space. The role played by uncertainties in the environmental models will be determined by comparing the modeled radiation environment with the actual environment measured aboard MPTB. Heavy-ion induced upsets have also been obtained from MPTB and will be compared with the "predicted" error rate following ground testing that will be done in the near future. These results should help identify sources of uncertainty in predictions of SEU rates in space.
    Keywords: Electronics and Electrical Engineering
    Type: Nuclear Instruments and Methods in Physics Research
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-15
    Description: Models of photosynthetic production at ecosystem and global scales require multiple input parameters specifying physical and physiological surface features. While certain physical parameters (e.g., absorbed photosynthetically active radiation) can be derived from current satellite sensors, other physiologically relevant measures (e.g., vegetation type, water status, carboxylation capacity, or photosynthetic light-use efficiency), are not generally directly available from current satellite sensors at the appropriate geographic scale. Consequently, many model parameters must be assumed or derived from independent sources, often at an inappropriate scale. An abundance of ecophysiological studies at the leaf and canopy scales suggests strong physiological control of vegetation-atmosphere CO2 and water vapor fluxes, particularly in evergreen vegetation subjected to diurnal or seasonal stresses. For example hot, dry conditions can lead to stomatal closure, and associated "downregulation" of photosynthetic biochemical processes, a phenomenon often manifested as a "midday photosynthetic depression". A recent study with the revised simple biosphere (SiB2) model demonstrated that photosynthetic downregulation can significantly impact global climate. However, at the global scale, the exact significance of downregulation remains unclear, largely because appropriate physiological measures are generally unavailable at this scale. Clearly, there is a need to develop reliable ways of extracting physiologically relevant information from remote sensing. Narrow-band spectrometers offer many opportunities for deriving physiological parameters needed for ecosystem and global scale photosynthetic models. Experimental studies on the ground at the leaf- to stand-scale have indicated that several narrow-band features can be used to detect plant physiological status. One physiological signal is caused by xanthophyll cycle pigment activity, and is often expressed as the Photochemical Reflectance Index (PRI). Because the xanthophyll cycle pigments are photoregulatory pigments closely linked to photosynthetic function, this index can be used to derive relative photosynthetic rates. An additional signal with physiological significance is the 970 nm water absorption band, which provides a measure of liquid water content. This feature has been quantified both using a simple 2-band ratio (900/970 nm, here referred to as the "Water Band Index" or WBI;), and using the "continuum removal" method. Current atmospheric correction methods for AVIRIS imagery also obtain quantitative expressions of surface liquid water absorption based on the 970 nm water band and may be comparable to ground-based estimates of water content using this feature. However, physiological interpretations of both the PRI and the WBI are best understood at the leaf and canopy scales, where complications of atmospheric interference and complex stand and landscape features can be minimized, and where experimental manipulations can be readily applied. Currently it is not known whether these physiological indices can be used to derive meaningful physiological information from AVIRIS imagery. In addition to the problem of atmospheric interference, another challenge is that any simple physiological index can be confounded by multiple factors unrelated to physiology, and this problem can become more severe at progressively larger spatial scales. For example, previous work has suggested that both the PRI and the WBI, are strongly correlated with other optical measures of canopy structure (e.g., the Normalized Difference Vegetation Index or green vegetation fraction), indicating a confounding effect of structure on physiological signals at the larger, landscape scale. Furthermore, the normal operating mode of most imaging spectrometers does not allow simultaneous, ground truthing at a level of detail needed for physiological sampling. Additionally, manipulative experiments of physiology are difficult to apply at a geographic scale suitable for comparison with remote imagery, which often works at spatial scales that are several orders of magnitude larger than those typically used for physiological studies. These limitations require the consideration of alternative approaches to validating physiological information derived from AVIRIS data. In this report, we present a multi-scale sampling approach to detecting physiologically significant signals in narrow-band spectra. This approach explores the multi-dimensional data space provided by narrow-band spectrometry, and combines AVIRIS imagery at a large scale, with ground spectral sampling at an intermediate scale, and detailed ecophysiological measurements at a fine scale, to examine seasonally and spatially changing relationships between multiple structural and physiological variables. Examples of this approach are provided by simultaneous sampling of the Normalized Difference Vegetation Index (NDVI), an index of fractional PAR interception and green vegetation cover, the Water Band Index (WBI, an index of liquid water absorption, and the Photochemical Reflectance Index (PRI, an index of xanthophyll cycle pigment activity and photosynthetic light-use efficiency. By directly linking changing optical properties sampled on the ground with measurable physiological states, we hope to develop a basis for interpreting similar signals in AVIRIS imagery.
    Keywords: Earth Resources and Remote Sensing
    Type: Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998; 1; 111-120; JPL-Publ-97-21-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: The partnership model used by NASA's Commercial Remote Sensing Program has been successful in better defining remote sensing functional requirements and translation to technical specifications to address environmental needs of the 21st century.
    Keywords: Earth Resources and Remote Sensing
    Type: SE-1998-04-00005-SSC
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) acquires spectral imaging data covering the 0.4 - 2.5 micron wavelength range in 224 10-nm-wide channels from a NASA ER-2 aircraft at 20 km. More than half of the spectral region is affected by atmospheric gaseous absorption. Over the past decade, several techniques have been used to remove atmospheric effects from AVIRIS data for the derivation of surface reflectance spectra. An operational atmosphere removal algorithm (ATREM), which is based on theoretical modeling of atmospheric absorption and scattering effects, has been developed and updated for deriving surface reflectance spectra from AVIRIS data. Due to small errors in assumed wavelengths and errors in line parameters compiled on the HITRAN database, small spikes (particularly near the centers of the 0.94- and 1.14-micron water vapor bands) are present in this spectrum. Similar small spikes are systematically present in entire ATREM output cubes. These spikes have distracted geologists who are interested in studying surface mineral features. A method based on the "global" fitting of spectra with low order polynomials or other functions for removing these weak spikes has recently been developed by Boardman (this volume). In this paper, we describe another technique, which fits spectra "locally" based on cubic spline smoothing, for quick post processing of ATREM apparent reflectance spectra derived from AVIRIS data. Results from our analysis of AVIRIS data acquired over Cuprite mining district in Nevada in June of 1995 are given. Comparisons between our smoothed spectra and those derived with the empirical line method are presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998; 1; 131-140; JPL-Publ-97-21-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...