ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (8)
  • 1990-1994  (15)
  • 1975-1979
  • 1950-1954
  • 1998  (8)
  • 1992  (15)
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Higher rates of nitrate assimilation are required to support faster growth in enhanced carbon dioxide. To investigate how this is achieved, tobacco plants were grown on high nitrate and high light in ambient and enhanced (700 μmol mol–1) carbon dioxide. Surprisingly, enhanced carbon dioxide did not increase leaf nitrate reductase (NR) activity in the middle of the photoperiod. Possible reasons for this anomalous result were investigated. (a) Measurements of biomass, nitrate, amino acids and glutamine in plants fertilized once and twice daily with 12 mol m–3 nitrate showed that enhanced carbon dioxide did not lead to a nitrate limitation in these plants. (b) Enhanced carbon dioxide modified the diurnal regulation of NR activity in source leaves. The transcript for nia declined during the light period in a similar manner in ambient and enhanced carbon dioxide. The decline of the transcript correlated with a decrease of nitrate in the leaf, and was temporarily reversed after re-irrigating with nitrate in the second part of the photoperiod. The decline of the transcript was not correlated with changes of sugars or glutamine. NR activity and protein decline in the second part of the photoperiod, and NR is inactivated in the dark in ambient carbon dioxide. The decline of NR activity was smaller and dark inactivation was partially reversed in enhanced carbon dioxide, indicating that post-transcriptional or post-translational regulation of NR has been modified. The increased activation and stability of NR in enhanced carbon dioxide was correlated with higher sugars and lower glutamine in the leaves. (c) Enhanced carbon dioxide led to increased levels of the minor amino acids in leaves. (d) Enhanced carbon dioxide led to a large decrease of glycine and a small decrease of serine in leaves of mature plants. The glycine:serine ratio decreased in source leaves of older plants and seedlings. The consequences of a lower rate of photorespiration for the levels of glutamine and the regulation of nitrogen metabolism are discussed. (e) Enhanced carbon dioxide also modified the diurnal regulation of NR in roots. The nia transcript increased after nitrate fertilization in the early and the second part of the photoperiod. The response of the transcript was not accentuated in enhanced carbon dioxide. NR activity declined slightly during the photoperiod in ambient carbon dioxide, whereas it increased 2-fold in enhanced carbon dioxide. The increase of root NR activity in enhanced carbon dioxide was preceded by a transient increase of sugars, and was followed by a decline of sugars, a faster decrease of nitrate than in ambient carbon dioxide, and an increase of nitrite in the roots. (f) To interpret the physiological significance of these changes in nitrate metabolism, they were compared with the current growth rate of the plants. (g) In 4–5-week-old plants, the current rate of growth was similar in ambient and enhanced carbon dioxide (≈ 0·4 g–1 d–1). Enhanced carbon dioxide only led to small changes of NR activity, nitrate decreased, and overall amino acids were not significantly increased. (h) Young seedlings had a high growth rate (0·5 g–1 d–1) in ambient carbon dioxide, that was increased by another 20% in enhanced carbon dioxide. Enhanced carbon dioxide led to larger increases of NR activity and NR activation, a 2–3-fold increase of glutamine, a 50% increase of glutamate, and a 2–3-fold increase in minor amino acids. It also led to a higher nitrate level. It is argued that enhanced carbon dioxide leads to a very effective stimulation of nitrate uptake, nitrate assimilation and amino acid synthesis in seedlings. This will play an important role in allowing faster growth rates in enhanced carbon dioxide at this stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants (Helianthus annuus L.) were subjected to soil drying with their shoots either kept fully turgid using a Passioura-type pressure chamber or allowed to decrease in water potential. Whether the shoots were kept turgid or not, leaf conductance decreased below a certain soil water content. During the soil drying, xylem sap samples were taken from individual intact and transpiring plants. Xylem sap concentrations of nitrate and phosphate decreased with soil water content, whereas the concentrations of the other anions (SO42 and Cl−) remained unaltered. Calcium concentrations also decreased. Potassium, magnesium, manganese and sodium concentrations stayed constant during soil drying. In contrast, the pH, the buffering capacity at a pH below 5 and the cation/anion ratio increased after soil water content was lowered below a certain threshold. Amino acid concentration of the xylem sap increased with decreasing soil water content. The effect of changes in ion concentrations in the xylem sap on leaf conductance is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Water transport ; Grass roots ; Hydraulic lift ; Deserts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Downward transport of water in roots, in the following termed “inverse hydraulic lift,” has previously been shown with heat flux techniques. But water flow into deeper soil layers was demonstrated in this study for the first time when investigating several perennial grass species of the Kalahari Desert under field conditions. Deuterium labelling was used to show that water acquired by roots from moist sand in the upper profile was transported through the root system to roots deeper in the profile and released into the dry sand at these depths. Inverse hydraulic lift may serve as an important mechanism to facilitate root growth through the dry soil layers underlaying the upper profile where precipitation penetrates. This may allow roots to reach deep sources of moisture in water-limited ecosystems such as the Kalahari Desert.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Canopy conductance ; Canopy transpiration ; Xylem sap flow ; Humidity response of stomatal ; Nothofagus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day−1 tree−1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour. Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s−1 that is equivalent to 112 mmol m−2 s−1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m−2 s−1 at the top and 150 mmol m−2 s−1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was −27.76±0.27‰ (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Annual plants ; Biomass partitioning ; Nitrogen nutrition ; Relative growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hypothesis was tested that faster growth of nitrophilic plants at high nitrogen (N) nutrition is counterbalanced by faster growth of non-nitrophilic plants at low N-nutrition. Ten annual plant species were used which originated from habitats of different N-availability. The species' preference for N was quantified by the “N-number” of Ellenberg (1979), a relative measure of nitrophily. The plants were cultivated in a growth cabinet at five levels of ammonium-nitrate supply. At low N-supply, the relative growth rate (RGR) was independent of nitrophily. At high N-supply, RGR tended to be higher in nitrophilic than in non-nitrophilic species. However, the response of RGR to N-supply was strongly and positively correlated with the nitrophily of species. Increasing N-supply enhanced partitioning to leaf weight per total biomass (LWR) and increased plant leaf area per total biomass (LAR). Specific leaf weight (SLW) and LWR were both higher in non-nitrophilic than in nitrophilic species at all levels of N-nutrition. NAR (growth per leaf area or net assimilation rate) increased with nitrophily only under conditions of high N-supply. RGR correlated positively with LAR, irrespective of N-nutrition. Under conditions of high N-supply RGR correlated with SLW negatively and with NAR positively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-04-01
    Print ISSN: 0169-5347
    Electronic ISSN: 1872-8383
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-09-01
    Print ISSN: 0934-3504
    Electronic ISSN: 1865-5084
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-01-01
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...