ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (8)
  • 1990-1994
  • 1980-1984  (15)
  • 1998  (8)
  • 1980  (15)
Collection
Years
  • 1995-1999  (8)
  • 1990-1994
  • 1980-1984  (15)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 3 (1980), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract It had been hypothesized that if daily CO2 assimilation is to be maximized at a given level of daily transpiration, stomatal apertures should change during the day so that the gain ratio (∂A/∂g)/(∂E/∂g) remains constant. These partial differentials describe the sensitivity of assimilation rate (A) and transpiration rate (E) to changes in stomatal conductance (g). Experiments were conducted to determine whether stomata respond to environment in a manner which results in constant gain ratios.Gas–exchange measurements were made of the stomatal and photosynthetic responses of Vigna unguiculata L. Walp. in controlled environments. Leaf conductance to water vapour responded to step changes in temperature and humidity so that for different steady-state conditions the gain ratio remained constant on all but one day. Depletion of water in the root zone resulted in day-to-day increases in gain ratio which were correlated with decreases in maximum leaf conductance to water vapour. The significance of the results for plant adaptation and stomatal mechanisms, and methods for measuring the gain ratio, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Higher rates of nitrate assimilation are required to support faster growth in enhanced carbon dioxide. To investigate how this is achieved, tobacco plants were grown on high nitrate and high light in ambient and enhanced (700 μmol mol–1) carbon dioxide. Surprisingly, enhanced carbon dioxide did not increase leaf nitrate reductase (NR) activity in the middle of the photoperiod. Possible reasons for this anomalous result were investigated. (a) Measurements of biomass, nitrate, amino acids and glutamine in plants fertilized once and twice daily with 12 mol m–3 nitrate showed that enhanced carbon dioxide did not lead to a nitrate limitation in these plants. (b) Enhanced carbon dioxide modified the diurnal regulation of NR activity in source leaves. The transcript for nia declined during the light period in a similar manner in ambient and enhanced carbon dioxide. The decline of the transcript correlated with a decrease of nitrate in the leaf, and was temporarily reversed after re-irrigating with nitrate in the second part of the photoperiod. The decline of the transcript was not correlated with changes of sugars or glutamine. NR activity and protein decline in the second part of the photoperiod, and NR is inactivated in the dark in ambient carbon dioxide. The decline of NR activity was smaller and dark inactivation was partially reversed in enhanced carbon dioxide, indicating that post-transcriptional or post-translational regulation of NR has been modified. The increased activation and stability of NR in enhanced carbon dioxide was correlated with higher sugars and lower glutamine in the leaves. (c) Enhanced carbon dioxide led to increased levels of the minor amino acids in leaves. (d) Enhanced carbon dioxide led to a large decrease of glycine and a small decrease of serine in leaves of mature plants. The glycine:serine ratio decreased in source leaves of older plants and seedlings. The consequences of a lower rate of photorespiration for the levels of glutamine and the regulation of nitrogen metabolism are discussed. (e) Enhanced carbon dioxide also modified the diurnal regulation of NR in roots. The nia transcript increased after nitrate fertilization in the early and the second part of the photoperiod. The response of the transcript was not accentuated in enhanced carbon dioxide. NR activity declined slightly during the photoperiod in ambient carbon dioxide, whereas it increased 2-fold in enhanced carbon dioxide. The increase of root NR activity in enhanced carbon dioxide was preceded by a transient increase of sugars, and was followed by a decline of sugars, a faster decrease of nitrate than in ambient carbon dioxide, and an increase of nitrite in the roots. (f) To interpret the physiological significance of these changes in nitrate metabolism, they were compared with the current growth rate of the plants. (g) In 4–5-week-old plants, the current rate of growth was similar in ambient and enhanced carbon dioxide (≈ 0·4 g–1 d–1). Enhanced carbon dioxide only led to small changes of NR activity, nitrate decreased, and overall amino acids were not significantly increased. (h) Young seedlings had a high growth rate (0·5 g–1 d–1) in ambient carbon dioxide, that was increased by another 20% in enhanced carbon dioxide. Enhanced carbon dioxide led to larger increases of NR activity and NR activation, a 2–3-fold increase of glutamine, a 50% increase of glutamate, and a 2–3-fold increase in minor amino acids. It also led to a higher nitrate level. It is argued that enhanced carbon dioxide leads to a very effective stimulation of nitrate uptake, nitrate assimilation and amino acid synthesis in seedlings. This will play an important role in allowing faster growth rates in enhanced carbon dioxide at this stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Notes: Abstract The southern Namib desert has a vegetation cover of mainly succulent plants in which species of the Mesembryanthemaceae are predominant. Climatically this area is characterized by hot and dry days, and cool and humid nights with episodic rainfalls only in winter. In this environment a great number of species perform a crassulaceaen acid metabolism (CAM). The responses of these plants to water stress as well as the regulation of CAM in the natural habitat are described and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Water transport ; Grass roots ; Hydraulic lift ; Deserts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Downward transport of water in roots, in the following termed “inverse hydraulic lift,” has previously been shown with heat flux techniques. But water flow into deeper soil layers was demonstrated in this study for the first time when investigating several perennial grass species of the Kalahari Desert under field conditions. Deuterium labelling was used to show that water acquired by roots from moist sand in the upper profile was transported through the root system to roots deeper in the profile and released into the dry sand at these depths. Inverse hydraulic lift may serve as an important mechanism to facilitate root growth through the dry soil layers underlaying the upper profile where precipitation penetrates. This may allow roots to reach deep sources of moisture in water-limited ecosystems such as the Kalahari Desert.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Welwitschia mirabilis is a perennial desert plant with extremely large leaves (0.5–1.0 m broad, 1–2 m long). Leaf temperatures were measured in the field and the energy budget was calculated. The portions of the leaf which were kept above the ground had leaf temperatures which were only 4–6°C above air temperature. In the leaf portions which were in contact with the ground leaf temperatures were 6–12°C above air temperature (absolute maximum 51°C). The important feature in the energy budget ofWelwitschia mirabilis is its high reflectivity (38% of the global radiation). Only about 56% of the global radiation is absorbed by the thick leathery leaves. The energy loss due to convection is of the same order of magnitude as the reflection and it is abouy the same in the portions of leaf on and above the ground. The difference in leaf temperatures found in these portions is due to the loss of thermal radiation from the section of leaf above the ground to the cooler ground which is shaded by the leaf. The provision of a heat sink due to the large area of shade cast by these large leaves is of significance to the existence ofWelwitschia mirabilis in its arid habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relation between daily maximal rates of net photosynthesis and plant water status was studied during a dry season on irrigated and non-irrigated, naturally growing, perennial wild plants. Species were examined which differ in phenology, leaf anatomy and morphology: Hammada scoparia, Artemisia herba-alba, Zygophyllum dumosum, and Reaumuria negevensis. Prumus armeniaca which was growing in the run-off farm at Avdat and which has mosomorphic leaves was included in the comparison. All plants differed in their seasonal change in plant water status, and in their seasonal change in daily maximal net photosynthesis. Rates of CO2 uptake were not uniquely related to simultanously measured leaf water potentials. Daily maximal rates of net photosynthesis of non-irrigated plants, and the difference between maximal CO2 uptake of irrigated and non-irrigated plants were examined in relation to pre-dawn water potential. Maximal net photosynthesis rates decreased very rapidly with decrease in pre-dawn water potential or, for Hammada scoparia, they decreased even with a constant level of pre-dawn water potential. Consequently, it was considered necessary to include both time and water potential in a parameter “bar day” describing the accumulated drought stress of the plants. All species showed the same relation between relative maximal net photosynthesis and drought experience as determined by cumulative daily addition of pre-dawn water potentials for the non-irrigated plants since the last rain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The seasonal change in diurnal patterns of net photosynthesis and daily carbon gain is studied in relation to the plant water status of the irrigated and non-irrigated naturally growing desert species Hammada scoparia, Zygophyllum dumosum, Artemisia herba-alba and Reaumuria negevensis. Comparison is made to cultivated Prunus armeniaca. Under non-irrigated natural conditions Hammada scoparia, a C4 plant, showed one-peaked flat diurnal courses of CO2 uptake which changed into a pattern of a high morning peak of CO2 uptake or slightly two-speaked curves in the late dry season. In contrast, the C3 species Zygophyllum dumosum, Artemisia herba-alba and Prunus armeniaca changed from one-peaked to distinct two-peaked patterns. At the end of the dry season, non-irrigated plants showed respiration only. Reaumuria negevensis had one-peaked curves with a low level of CO2 uptake. There is no general relation between day-time CO2 gain and pre-dawn water potential for the investigated species. In order to characterize the effect of soil drought, the CO2 gain during day-time of non-irrigated plants is expressed as a percentage of the CO2 gain of the irrigated counterparts. After an initial period of minimal drought effect, the relative day-time CO2 gain decreases almost linearly with cumulative water stress as determined by the daily addition of pre-dawn water potentials for the non-irrigated plants since the last rainfall. The slope of decrease differs from species to species. The relation of daily CO2 gain to maximal net photosynthesis is discussed. Initially, at a good plant water status, the daily CO2 gain does not decrease in proportion to the maximal photosynthetic rates as a result of stomatal control at high photosynthetic activity. At increasing water stress the daily CO2 gain decreases more than proportionally to the decrease of the maximal rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Planta 149 (1980), S. 445-453 
    ISSN: 1432-2048
    Keywords: Elasticity ; Hydraulic conductivity ; Leaf cells ; Tradescantia ; Turgor pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The water relations of leaves of Tradescantia virginiana were studied using the miniaturized pressure probe (Hüsken, E. Steudle, Zimmermann, 1978 Plant Physiol. 61, 158–163). Under well-watered conditions cell turgor pressures, P o, ranged from 2 to 8 bar in epidermal cells. In subsidiary cells P o was about 1.5 to 4.5 bar and in mesophyll cells about 2 to 3.5 bar. From the turgor pressure, relaxation induced in individual cells by changing the turgor pressure directly by means of the pressure probe, the half-time of water exchange was measured to be between 3 and 100 s for the epidermal, subsidiary, and mesophyll cells. The volumetric elastic modulus, ε, of individual cells was determined by changing the cell volume by a defined amount and simultaneously measuring the corresponding change in cell turgor pressure. The values for the elastic modulus for epidermal, subsidiary, and mesophyll cells are in the range of 40 to 240 bar, 30 to 200 bar, and 6 to 14 bar, respectively. Using these values, the hydraulic conductivity, L p, for the epidermal, subsidiary, and mesophyll cells is calculated from the turgor pressure relaxation process (on the basis of the thermodynamics of irreversible processes) to be between 1 and 55·10-7 cm s-1 bar-1. The data for the volumetric elastic modulus of epidermal and subsidiary cells indicate that the corresponding elastic modulus for the guard cells should be considerably lower due to the large volume changes of these cells during opening or closing. Recalculation of experimental data obtained by K. Raschke (1979, Encycl. Plant Physiol. N.S., vol. 7, pp 383–441) on epidermal strips of Vicia faba indicates that the elastic modulus of guard cells of V. faba is in the order of 40–80 bar for closed stomata. However, with increasing stomatal opening, i.e., increasing guard cell volume, ε decreases. Therefore, in our opinion Raschke's results would indicate a relationship between guard cell volume and ε which would be inverse to that for plant cells known in the literature. ε assumes values between 20–40 bar when the guard cell colume is soubled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 40 (1980), S. 192-192 
    ISSN: 1573-5052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1980-10-01
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...