ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1997  (2)
Collection
Years
  • 1995-1999  (2)
Year
  • 1
    Publication Date: 1997-04-10
    Description: Laboratory experiments were conducted to study the interaction between two downward propagating internal wave rays with identical properties but opposite horizontal phase velocities. The intersection of the rays produced a velocity field with stagnation points, and these points propagated vertically upwards within the intersection region. Nonlinear non-resonant interactions between the two rays produced evanescent modes, with frequencies greater than the ambient buoyancy frequency, trapped within the intersection region. These evanescent modes provided a mechanism whereby energy could accumulate locally and, even though the vertical wavelength of the primary resultant wave remained the same, the local isopycnal displacements increased in time. Eventually, the isopycnals were forced to overturn in the region just above the stagnation points by the variation with depth in the local horizontal strain rate. The gravitationally unstable overturning ultimately broke down releasing its available potential energy and generating turbulence within the intersection region. The results showed that the release of available potential energy was disrupted by the wave motions and even the dissipative scales were directly affected by the ambient stratification and the background wave motion. The distribution of the centred displacement scales was highly skewed towards the Kolmogorov scale and the turbulent Reynolds number Ret was low. Thus, the net buoyancy flux was very small and almost all turbulent kinetic energy was dissipated over the parameter range investigated. The results also showed that for such dissipative events the square of the strain Froude number (ε/νN20) and the turbulent Reynolds number Ret can be less than one.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-11-10
    Description: A laboratory experiment was conducted to investigate the characteristics of turbulence generated by an internal wave ray breaking on a sloping bed. The width of the incident wave ray was small compared to the bed length, so that an isolated turbulent patch was generated by the breaking process, a configuration unique to the present study. The parameter range covered subcritical, critical and supercritical frequencies. Flow visualization and velocity measurements revealed that near critical conditions the flow was confined to a narrow region above the bed and, contrary to expectations, critical waves showed a weak turbulence field. Subcritical and supercritical reflection resembled wave-wave interaction between the incident and the reflected waves and showed comparable centred displacement lengthscales. As the incident waves became progressively supercritical instabilities were first initiated away from the bed. For supercritical waves the centred displacement lengthscale and the turbulent Reynolds number both increased steadily up to about γ ≈ 2, after which they started to decrease (γ = ω/ωc, where ω is the frequency of the incident wave and ωc = N sin β is the critical frequency for an ambient uniform stratification of magnitude N and a bed angle of β). For subcritical waves an increase in the centred displacement lengthscale and the turbulent Reynolds number was also observed. The mixed fluid generated at the boundary collapsed into the fluid interior in the form of a horizontal two-dimensional viscous-buoyancy intrusion: the efficiency of mixing was, however, very small and no measurable change in the mean density gradient was observed over the duration of the experiments.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...