ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m−2 s−1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants (Helianthus annuus L.) were subjected to soil drying with their shoots either kept fully turgid using a Passioura-type pressure chamber or allowed to decrease in water potential. Whether the shoots were kept turgid or not, leaf conductance decreased below a certain soil water content. During the soil drying, xylem sap samples were taken from individual intact and transpiring plants. Xylem sap concentrations of nitrate and phosphate decreased with soil water content, whereas the concentrations of the other anions (SO42 and Cl−) remained unaltered. Calcium concentrations also decreased. Potassium, magnesium, manganese and sodium concentrations stayed constant during soil drying. In contrast, the pH, the buffering capacity at a pH below 5 and the cation/anion ratio increased after soil water content was lowered below a certain threshold. Amino acid concentration of the xylem sap increased with decreasing soil water content. The effect of changes in ion concentrations in the xylem sap on leaf conductance is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Nicotiana (photosynthesis) ; Nitrogen ; Photosynthesis (control analysis) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of nitrogen supply during growth on the contribution of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) to the control of photosynthesis was examined in tobacco (Nicotiana tabacum L.). Transgenic plants transformed with antisense rbcS to produce a series of plants with a progressive decrease in the amount of Rubisco were used to allow the calculation of the flux-control coefficient of Rubisco for photosynthesis (CR). Several points emerged from the data: (i) The strength of Rubisco control of photosynthesis, as measured by CR, was altered by changes in the short-term environmental conditions. Generally, CR was increased in conditions of increased irradiance or decreased CO2. (ii) The amount of Rubisco in wild-type plants was reduced as the nitrogen supply during growth was reduced and this was associated with an increase in CR. This implied that there was a specific reduction in the amount of Rubisco compared with other components of the photosynthetic machinery. (iii) Plants grown with low nitrogen and which had genetically reduced levels of Rubisco had a higher chlorophyll content and a lower chlorophyll a/b ratio than wild-type plants. This indicated that the nitrogen made available by genetically reducing the amount of Rubisco had been re-allocated to other cellular components including light-harvesting and electron-transport proteins. It is argued that there is a “luxury” additional investment of nitrogen into Rubisco in tobacco plants grown in high nitrogen, and that Rubisco can also be considered a nitrogen-store, all be it one where the opportunity cost of the nitrogen storage is higher than in a non-functional storage protein (i.e. it allows for a slightly higher water-use efficiency and for photosynthesis to respond to temporarily high irradiance).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Nicotiana (transformed with antisense DNA) ; Photosynthesis ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (antisense)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Experiments were carried out to determine how decreased expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) affects photosynthetic metabolism in ambient growth conditions. In a series of tobacco (Nicotiana tabacum L.) plants containing progressively smaller amounts of Rubisco the rate of photosynthesis was measured under conditions similar to those in which the plants had been grown (310 μmol photons · m−2 · s−1, 350 μbar CO2, 22° C). (i) There was only a marginal inhibition (6%) of photosynthesis when Rubisco was decreased to about 60% of the amount in the wildtype. The reduced amount of Rubisco was compensated for by an increase in Rubisco activation (rising from 60 to 100%), with minor contributions from an increase of its substrates (ribulose-1,5-bisphosphate and the internal CO2 concentration) and a decrease of its product (glycerate-3-phosphate). (ii) The decreased amount of Rubisco was accompanied by an increased ATP/ADP ratio that may be causally linked to the increased activation of Rubisco. An increase of highenergy-state chlorophyll fluorescence shows that thylakoid membrane energisation and high-energy-state-dependent energy dissipation at photosystem two had also increased. (iii) A further decrease of Rubisco (in the range of 50–20% of the wildtype level) resulted in a strong and proportional inhibition of CO2 assimilation. This was accompanied by a decrease of fructose-1,6-bisphosphatase activity, coupling-factor 1 (CF1)-ATP-synthase protein, NADP-malate dehydrogenase protein, and chlorophyll. The chlorophyll a/b ratio did not change, and enolase and sucrose-phosphate synthase activity did not decrease. It is argued that other photosynthetic enzymes are also decreased once Rubisco decreases to the point at which it becomes strongly limiting for photosynthesis. (iv) It is proposed that the amount of Rubisco in the wildtype represents a balance between the demands of light, water and nitrogen utilisation. The wildtype overinvests about 15% more protein in Rubisco than is needed to avoid a strict Rubisco limitation of photosynthesis. However, this “excess” Rubisco allows the wildtype to operate with lower thylakoid energisation, and decreased high-energy-state-dependent energy dissipation, hence increasing light-use efficiency by about 6%. It also allows the wildtype to operate with a lower internal CO2 concentration in the leaf and a lower stomatal conductance at a given rate of photosynthesis, so that instantaneous water-use efficiency is marginally (8%) increased.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Flux control (photosynthesis) ; Nicotiana (transformed with antisense DNA) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase (control of photosynthesis) ; Transgenic plant (antisense)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transgenic tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to produce a series of plants with a progressive decrease in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been used to investigate the contribution of Rubsico to the control of photosynthesis at different irradiance, CO2 concentrations and vapour-pressure deficits. Assimilation rates, transpiration, the internal CO2 concentration and chlorophyll fluorescence were measured in each plant. (i) The flux-control coefficient of Rubisco was estimated from the slope of the plot of Rubisco content versus assimilation rate. The flux-control coefficient had a value of 0.8 or more in high irradiance, (1050 μmol·m−2·s−1), low-vapour pressure deficit (4 mbar) and ambient CO2 (350 μbar). Control was marginal in enhanced CO2 (450 μbar) or low light (310 μmol·m−2·s−1) and was also decreased at high vapour-pressure deficit (17 mbar). No control was exerted in 5% CO2. (ii) The flux-control coefficients of Rubisco were compared with the fractional demand placed on the calculated available Rubisco capacity. Only a marginal control on photosynthetic flux is exerted by Rubisco until over 50% of the available capacity is being used. Control increases as utilisation rises to 80%, and approaches unity (i.e. strict limitation) when more than 80% of the available capacity is being used. (iii) In low light, plants with reduced Rubisco have very high energy-dependent quenching of chlorophyll fluorescence (qE) and a decreased apparent quantum yield. It is argued that Rubisco still exerts marginal control in these conditions because decreased Rubisco leads to increased thylakoid energisation and high-energy dependent dissipation of light energy, and lower light-harvesting efficiency. (iv) The flux-control coefficient of stomata for photosynthesis was calculated from the flux-control coefficient of Rubisco and the internal CO2 concentration, by applying the connectivity theorem. Control by the stomata varies between zero and about 0.25. It is increased by increased irradiance, decreased CO2 or decreased vapour-pressure deficit. (v) Photosynthetic oscillations in saturating irradiance and CO2 are suppressed in decreased-activity transformants before the steady-state rate of photosynthesis is affected. This provides direct evidence that these oscillations reveal the presence of “excess” Rubisco. (vi) Comparison of the flux-control coefficients of Rubisco with mechanistic models of photosynthesis provides direct support for the reliability of these models in conditions where Rubisco has a flux-control coefficient approach unity (i.e. “limits” photosynthesis), but also indicates that these models are less useful in conditions where control is shared between Rubisco and other components of the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Deep roots function ; Terrestrial vegetation ; Biomes ; Plant forms ; Root depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Patagonia-vegetation ; Root distribution ; 13C-, 18O-, D-Isotope composition ; Water ; Plant succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Mistletoe ; Nitrogen and carbon parasite ; Carbon and nitrogen stable isotopes ; Water use efficiency ; Namibia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Xylem-tapping mistletoe species growing on Mimosaccae, non-Mimosaceae and hosts performing Crassulacean acid metabolism (CAM) were studied along an aridity gradient in the Namib desert. °13C-values of mistletoes became more negative with decreasing nitrogen (N)-concentration in their leaves, while the host plants showed no such relationship. This might suggest that mistletoes regulate their water use efficiency according to the nitrogen supply from the host. However, further inspection of the data indicates that the relations of δ13C-values with leaf nitrogen in mistletoes may result from carbon input from the host. This is especially true for mistletoes growing on CAM plants which exhibit a very high δ13C-value, but show no evidence of CAM. It is calculated that about 60% of the carbon in mistletoes growing on C3 and on CAM hosts originated from the host. The hypothesis of Marshall and Ehleringer (1990) that xylem tapping mistletoes are also carbon parasites could explain the change in δ13C-values with N-supply and the difference in δ13C-values between mistletoes growing on C3 and CAM hosts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Canopy conductance ; Canopy transpiration ; Xylem sap flow ; Humidity response of stomatal ; Nothofagus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day−1 tree−1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour. Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s−1 that is equivalent to 112 mmol m−2 s−1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m−2 s−1 at the top and 150 mmol m−2 s−1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was −27.76±0.27‰ (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...