ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (15)
  • 1975-1979  (8)
  • 1995  (15)
  • 1977  (8)
Collection
Years
  • 1995-1999  (15)
  • 1975-1979  (8)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Root exudates were sampled from detopped root systems of castor bean (Ricinus communis). Different volume flux rates were imposed by changing the pneumatic pressure around the root system using a Passioura-type pressure chamber. The concentrations of cations, anions, amino acids, organic acids and abscisic acid decreased hyperbolically when flux rates increased from pure root exudation up to values typical for transpiring plants. Concentrations at low and high fluxes differed by up to 40 times (phosphate) and the ratio of substances changed by factors of up to 10. During the subsequent reduction of flux produced by lowering the pneumatic pressure in the root pressure chamber, the concentrations and ratios of substances deviated (at a given flux rate) from those found when flux was increased. The flux dependence of exudate composition cannot therefore be explained by a simple dilution mechanism. Xylem sap samples from intact, transpiring plants were collected using a Passioura-type root pressure chamber. The concentrations of the xylem sap changed diurnally. Substances could be separated into three groups: (1) calcium, magnesium and amino acid concentrations correlated well with the values expected from their concentration-flux relationships, whereas (2) the concentrations of sulphate and phosphate deviated from the expected relationships during the light phase, and (3) nitrate and potassium concentrations in intact plants varied in completely the opposite manner from those in isolated root systems. Abscisic acid concentrations in the root exudate were dependent on the extent of water use and showed strong diurnal variations in the xylem sap of intact plants even in droughtstressed plants. Calculations using root exudates overestimated export from the root system in intact plants, with the largest deviation found for proton flux (a factor of 10). We conclude that root exudate studies cannot be used as the sole basis for estimating fluxes of substances in the xylem of intact plants. Consequences for studying and modelling xylem transport in whole plants are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters.For canopies low in total N, daily assimilation rates are ∼10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation.Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Carbohydrate ; Growth ; Nitrogen ; Phaseolus lunatus ; Storage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth, photosynthesis, and storage of nitrogen (N) and total non-structural carbohydrates (TNC) of a perennial wild type and an annual cultivar of lima bean (Phaseolus lunatus) were examined at different light intensities and N supplies. Relative growth rate and photosynthesis increased with light and N availability. N limitation enhanced biomass allocation into root rather than into shoot, while light limitation enhanced growth of leaf area. The TNC concentrations increased with light intensity and thus with photosynthesis, while the concentrations of organic N and nitrate decreased. Increasing N supply had the opposite effect. Therefore, TNC and organic N concentrations were negatively correlated (r=−0.90). Pool size of N or TNC increased with N and light availability when either resource was non-limiting, but increased little or remained constant when either resource was limiting. Storage reached a minimum when both resources were supplied at an equal rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 102 (1995), S. 361-370 
    ISSN: 1432-1939
    Keywords: Picea abies (L.) Karst ; Ammonium ; Nitrate ; 15N ; Tracer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Biomass distribution and diurnal CO2 uptake under natural conditions were investigated on Picea abies in a mountainous climate (Solling, Northwest Germany). Spruce has a remarkable variability in leaf characteristics. Even on a single branch in the lower sun crown, needle dry weight and surface area change considerably from the branch base to the tip and accoring to exposure. Only about 18% of the total biomass of the tree was current year's growth, about 40% of the needles were 4 years and older reaching a maximal age of 12 years. The main growing zone was at the border of upper shade and lower sun crown and the main accumulation of dry weight was at a greater tree height than was observed for maximal growth of needle numbers or surface area. The annual, new growth shifted toward the upper sun crown. Maximal daily CO2 uptake was highest in the lower sun crown on days with variable cloud cover when temperatures were moderate and water vapor pressure deficits were low. Also the annual CO2 uptake was highest in the lower sun crown, where 4-year-old and older needles contributed about 35% to the annual CO2 uptake of the tree. Current year growth contributed about 15% of the total CO2 gain. The upper and lower sun crowns produce about 70% of the total carbon gain. The carbon balance of spruce and the distribution of the production process in relation to needle age and crown level are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and CO2 uptake in the crown of a spruce tree is described and the production processes of this evergreen conifer are compared with those of a deciduous beech. Spruce had 60% lower rates of net photosynthesis per dry weight than beech. But, beech had a 30% shorter growing season and a 84% smaller biomass than spruce. The annual CO2 gain was 40% lower in beech than it was in spruce. An analysis shows the following conclusions for this habitat. (1) The effect of a prolonged growing season is small. The annual CO2 gain of spruce would be reduced only by 9% if the growing season was the same length as for beech. (2) The annual CO2 gain would increase 14% if all needles in spruce were deciduous, because the current year needles have a higher average rate of CO2 uptake than 3-year old and older needles, but a lower average rate than 1- and 2-year old ones. However, the carbon balance of the tree shows that spruce could not afford to produce the existing needle biomass (14 t ha-1) each year. (3) If spruce were to produce the same deciduous foliage biomass during the same growing season as beech then total production by spruce would be reduced 67%. (4) The annual CO2 uptake by evergreen spruce was higher than deciduous beech not because of a long growing season, but because of the longevity of its needles, which during their total life time (an average of 5 years) have a two to three times greater CO2 uptake than a deciduous leaf in one summer season. The relatively small investment in current year needles produces an annually low, but long lasting assimilation of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 28 (1977), S. 247-259 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Previous publications have reported on investigations of CO2 exchange in the desert lichenRamalina maciformis both in its natural habitat in the Negev and in the laboratory. Utilizing laboratory data, net photosynthesis and dark respiration were expressed as mathematical functions of the most important environmental factors. Based on these relationships, a model is developed that allows one to predict CO2 exchange of the plant. Input data are light intensity, temperature, and water content of the thallus, together with a measure of the rate of the seasonal change of photosynthetic and respiratory activity. The validity of the model is tested by comparing simulated daily courses of CO2 uptake and release of the lichen with independent results of CO2 exchange measurements conducted in the field during and after the condensation of dew. The sensitivity of the model is shown by simulating changes in the input data of temperature and water content of the lichen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Net photosynthesis of Picea abies was measured in a spruce forest in northern Germany with temperature- and humidity-controlled cuvettes in 4 different crown layers on shoots of different ages. These measurments were performed such that temperature and humidity either followed ambient conditions or were kept constant. Annual courses of light-, temperature-, and humidity-related net photosynthesis were determined. Spruce had a remarkably constant rate of CO2 uptake from April to September for 1-year and older needles. Light saturation was achieved at 25 klx. Current year needles had the highest rates of CO2 uptake in early summer, but these rates decreased by autumn. Photosynthetic capacity decreased with needle age and, on a dry weight basis, it was higher in the shade than in the sun crown. The temperature optimum was between 13 and 23° C. Photosynthesis in spruce decreased when air humidity was low. The effect of the natural weather conditions on photosynthetic capacity was determined. The habitat is characterized by a high frequency of low light intensities (75% of total daytime below 20 klx) and cool temperatures (80% of daytime between 9 and 21° C). Low air humidity was only present when light intensities were high. The major limiting factor for production was low light intensities, which reduced photosynthetic capacity in the sun crown to 42% below maximum possible rates. Adverse temperatures reduced CO2 uptake by 28% and large water vapor pressure deficits reduced rates by only 2% compared with maximum possible rates. The limited adaptation to light is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 121 (1995), S. 79-87 
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-06-01
    Description: Measurements of aboveground biomass and nitrogen (N) nutrition were made during July 1993 in 50-, 130-, and 380-year-old stands of Larixgmelinii (Rupr.) Rupr. in eastern Siberia. Constituting six forest types based on understorey plants, the stands were representative of vegetation throughout the Yakutsk region. Average tree height, diameter, and density ranged from 2 m, 23 mm, and 50 800 stems/ha in the 50-year-old stand to 11 m, 160 mm, and 600 stems/ha in the oldest stand. Aboveground biomass in the 50-year-old stand was 4.4 kg•m−2, and the aboveground N pool was 1.1 mol•m−2. This was slightly higher than the N pool in a 125-year-old stand with a Ledum understorey (1.0 mol•m−2), despite its higher biomass (7.2 kg•m−2). The highest observed aboveground biomass in a 125-year-old stand (characterized by the N2-fixing understorey plant Alnasterfruticosa) reached 12.0 kg•m−2, but the corresponding N pool was only 1.6 mol•m−2. In the oldest stand, aboveground biomass was 8.9 kg•m−2 and the N pool was 1.1 mol•m−2. There was thus a relatively constant quantity of N in the aboveground biomass of stands differing in age by almost 400 years. We postulate that N sets a limit on carbon accumulation in this boreal forest type. Trees were extremely slow growing, and there was essentially no aboveground biomass accumulation between the ages of 130 and 380 years because of a lack of available N. This conclusion was supported by graphical analysis indicating that the self-thinning process in our stands was not governed by the availability of radiation according to allometric theory. Much of the available N was used in the production of tree stems where 86% of the aboveground N (and 96% of aboveground biomass) was immobilized in the oldest stand. N in wood of the old stand exceeded the N pool in the litter layer and was 20% of the N pool in the Ah horizon. The processes of carbon and N partitioning were further explored by the estimation of carbon and N fluxes during three periods of forest development. We calculated a loss of ecosystem N during the period of self-thinning, while in the mature stands the N cycle appeared to be very tight. The immobilized N is returned from the wood into a plant-available form only by a recurrent fire cycle, which regenerates the N cycle. Thus fire is an essential component for the persistence of the L. gmelinii forest.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...