ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Drosera  (1)
  • Serjania  (1)
  • δ15N
  • 1995-1999
  • 1990-1994  (3)
  • 1994  (1)
  • 1990  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 427-429 
    ISSN: 1432-1939
    Keywords: Insectivorous plants ; Insect capture ; Leaf growth ; Nitrogen storage ; Drosera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Rates of insect capture increased with leaf area in the insectivorous plant Drosera rotundifolia, and growth of new leaves was related to insect capture. However, increased leaf growth was counterbalanced by leaf abscission which was in turn related to insect capture and leaf growth. Leaf loss equaled leaf growth in plants having natural rate of insect capture. A large proportion of the nitrogen gain from prey was stored in the hypocotyl; it was estimated from feeding experiments that about 24% to 30% of the nitrogen stored in the hypocotyl after winter originated from insect capture in the previous season. The effect of insect capture is discussed in relation to the life cycle of Drosera.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 355-361 
    ISSN: 1432-1939
    Keywords: Vine ; Xylem water flow ; Entadopsis ; Serjania ; Cyclanthera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A method for determining the mass flow rate of xylem water in thin stems under natural field conditions is presented. Diurnal courses of xylem water flow and stomatal conductance of the vines Entadopsis polystachya, Cyclanthera multifoliolata, and Serjania brachycarpa were examined in a tropical deciduous forest on the west coast of Mexico. E. polystachya (leaf area 23.6 m2) had a maximum water flow rate of 6.50 kg h-1 or 1.44 kg cm-2 stem basal area h-1; daily water use was 2.00 kg m-2 leaf area day-1. S. brachycarpa (leaf area 4.5 m2) and C. multifoliolata (leaf area 3.6 m2) had a maximum water flow rate of 0.72 and 0.19 kg h-1 or 0.63 and 0.92 kg cm-2 stem basal area h-1. Daily water use was 1.26 and 0.39 kg m-2 leaf area day-1, respectively. The daily courses of xylem water flow were strongly influenced by the orientation of the leaf area to irradiance and its intensity. While leaves of E. polystachya had a constant high stomatal conductance during the day, S. brachycarpa had a maximum stomatal opening in the morning followed by continuous closure during the rest of the day. In contrast to the woody species, the herbaceous C. multifoliolata exhibited a strong midday depression of stomatal conductance and wilting of its leaves. The leaf biomass accounted for 8% (Entadopsis), 16% (Serjania), and 23% (Cyclanthera) of above-ground biomass. The relation of sapwood area to leaf area supplied (Huber value) was 0.19 (Entadopsis), 0.18 (Serjania), and 0.06 (Cyclanthera) cm2 m-2
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: atmospheric deposition ; δ15N ; δ34S ; forest decline ; nitrogen ; Picea abies ; stable isotopes ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Concentrations and natural isotope abundance of total sulfur and nitrogen as well as sulfate and nitrate concentrations were measured in needles of different age classes and in soil samples of different horizons from a healthy and a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), in order to study the fate of atmospheric depositions of sulfur and nitrogen compounds. The mean δ15N of the needles ranged between −3.7 and −2.1 ‰ and for δ34S a range between −0.4 and +0.9 ‰ was observed. δ34S and sulfur concentrations in the needles of both stands increased continuously with needle age and thus, were closely correlated. The δ15N values of the needles showed an initial decrease followed by an increase with needle age. The healthy stand showed more negative δ15N values in old needles than the declining stand. Nitrogen concentrations decreased with needle age. For soil samples at both sites the mean δ15N and δ34S values increased from −3 ‰ (δ15N) or +0.9 ‰ (δ34S) in the uppermost organic layer to about +4 ‰ (δ15N) or +4.5 ‰ (δ34S) in the mineral soil. This depth-dependent increase in abundance of 15N and 34S was accompanied by a decrease in total nitrogen and sulfur concentrations in the soil. δ15N values and nitrogen concentrations were closely correlated (slope −0.0061 ‰ δ15N per μmol eq N gdw −1), and δ34S values were linearly correlated with sulfur concentrations (slope −0.0576 ‰ δ34S per μmol eq S gdw −1). It follows that in the same soil samples sulfur concentrations were linearly correlated with the nitrogen concentrations (slope 0.0527), and δ34S values were linearly correlated with δ15N values (slope 0.459). A correlation of the sulfur and nitrogen isotope abundances on a Δ basis (which considers the different relative frequencies of 15N and 34S), however, revealed an isotope fractionation that was higher by a factor of 5 for sulfur than for nitrogen (slope 5.292). These correlations indicate a long term synchronous mineralization of organic nitrogen and sulfur compounds in the soil accompanied by element-specific isotope fractionations. Based on different sulfur isotope abundance of the soil (δ34S=0.9 ‰ for total sulfur of the organic layer was assumed to be equivalent to about −1.0 ‰ for soil sulfate) and of the atmospheric SO2 deposition (δ34S=2.0 ‰ at the healthy site and 2.3 ‰ at the declining site) the contribution of atmospheric SO2 to total sulfur of the needles was estimated. This contribution increased from about 20 % in current-year needles to more than 50 % in 3-year-old needles. The proportion of sulfur from atmospheric deposition was equivalent to the age dependent sulfate accumulation in the needles. In contrast to the accumulation of atmospheric sulfur compounds nitrogen compounds from atmospheric deposition were metabolized and were used for growth. The implications of both responses to atmospheric deposition are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...