ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1985-1989
  • 1993  (3)
Collection
Keywords
Years
  • 1990-1994  (3)
  • 1985-1989
Year
  • 1
    Publication Date: 2019-06-28
    Description: Experimental and computational tests were performed on a VR-12 airfoil to determine if the dynamic-stall behavior that normally accompanies high-angle pitch oscillations could be modified by segmenting the forward portion of the airfoil and extending it ahead of the main element. In the extended position the configuration would appear as an airfoil with a leading-edge slat, and in the retracted position it would appear as a conventional VR-12 airfoil. The calculations were obtained from a numerical code that models the vorticity transport equation for an incompressible fluid. These results were compared with test data from the water tunnel facility of the Aeroflightdynamics Directorate at Ames Research Center. Steady and unsteady flows around both airfoils were examined at angles of attack between 0 and 30 deg. The Reynolds number was fixed at 200,000 and the unsteady pitch oscillations followed a sinusoidal motion described by alpha = alpha(sub m) + 10 deg sin(omega t). The mean angle (alpha(sub m)) was varied from 10 to 20 deg and the reduced frequency from 0.05 to 0.20. The results from the experiment and the calculations show that the extended-slat VR-12 airfoil experiences a delay in both static and dynamic stall not experienced by the basic VR-12 airfoil.
    Keywords: AERODYNAMICS
    Type: AD-A274150 , NASA-TP-3407 , A-93056 , NAS 1.60:3407 , ATCOM-TR-93-A-002
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The deformable leading edge (DLE) concept to improve the blade capability in lift, drag and pitching moments has been investigated for the purpose of meeting new rotor maneuverability and susceptibility requirements. The advantages and disadvantages of this concept have been carefully examined with limited computational and experimental results. This work showed that this concept achieves a substantial improvement in lift capability and also reduces the drag and pitching moment at the same time. Effects of various parameters, such as Reynolds number, reduced frequency, mean angle of oscillation, and airfoil shape, on the performance of these airfoils were also investigated.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 93-3526 , AD-A268648 , In: AIAA Applied Aerodynamics Conference, 11th, Monterey, CA, Aug. 9-11, 1993, Technical Papers. Pt. 2 (A93-47201 19-02); p. 968-988.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.
    Keywords: AERODYNAMICS
    Type: NASA-TP-3357 , ATCOM-TR-92-A-013 , A-93006 , NAS 1.60:3357 , AD-A271988
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...