ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1990-1994  (4)
  • 1992  (4)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1990-1994  (4)
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Meteorology and atmospheric physics 47 (1992), S. 177-199 
    ISSN: 1436-5065
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geographie , Physik
    Notizen: Summary Microwave radiometer brightness temperature (T b) measurements obtained from satellites over the oceans in dual polarization, at frequencies ranging from 6.6 to 85 GHz, reveal information about the rain and precipitation sized ice. These multifrequency measurements are composited from observations made by the Scanning Multichannel Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I). TheT b measurements at 37 GHz, having a field of view (fov) of about 30 km, show relatively strong emissions due to rain, reaching values as large as 260 K over the tropical and mid-latitude rainbelts. Only marginal effects due to scattering by ice above the rain clouds are revealed. At frequencies below 37 GHz, where the fov is much larger than 30 km and the extinction is weaker,T b is significantly smaller than 260 K. Additional information content about rain, at these low frequencies, is not appreciable. On the other hand, at 85 GHz (fov ≅15 km), where the extinction is very strong, the sea surface below the clouds is often masked and scattering due to ice above the rain clouds is vividly noticed. However, these high frequency measurements do not yield direct information about rain below the clouds. Recognizing the above merits inherent in the 37 GHz observations the SMMR and SSM/I data at this frequency are utilized to develop and empirical method to retrieve rain rate over oceans. In this method it is assumed that over an oceanic area, the statistics of the observedT b must be derivable from the statistics of the corresponding rain rates. Furthermore, the underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain above a given threshold is empirically rectified with the help of two parameters that depend on the total water vapor content in the atmosphere. Rain rates deduced over the oceans around Japan using the SSM/I data, when compared with those measured by radars that are calibrated against rain gauges, show a good correlation; there is, however, a systematic overestimation. Seasonal mean maps of the rainfall over the global oceans based on SMMR data compare favorably with climatological rain maps over the Atlantic and Pacific Oceans developed by Dorman and Bourke (1979, 1981).
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1992-01-01
    Print ISSN: 0177-7971
    Digitale ISSN: 1436-5065
    Thema: Geographie , Physik
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-08-24
    Beschreibung: The region of the IR spectrum that is ideally suited for detecting optically thin cirrus clouds is in the window between 10 and 13 microns. Here relatively weak absorption due to the water vapor lines and continuum is present and hence the extinction characteristic of the cloud particles is readily discernible. In order to demonstrate these properties, two IR spectra are presented, one with clear skies and one with an optically thin cirrus. As a result of the cloud particle extinction, an appreciable increase in the brightness temperature from 10 to 13 microns is observed. This decrease is found to be nearly linear in the case of the tropical thin cirrus, which is also geometrically thin. On the basis of radiative transfer simulations, it is inferred that the cloud particle size that can produce this spectral character has an effective diameter of about 12 microns, which is comparable to the wavelength of the radiation.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: In: Conference on Satellite Meteorology and Oceanography, 6th, Atlanta, GA, Jan. 5-10, 1992, Preprints (A93-36051 14-47); p. 21-24.
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2011-08-24
    Beschreibung: The brightness temperature (T sub b) measured at 37 GHz shows fairly strong emission from rain, and only slight effects caused by scattering by ice above the rain clouds. At frequencies below 37 GHz, where the FOV is larger and the volume extinction coefficient is weaker, it is found that the observations do not yield appreciable additional information about rain. At 85 GHz (FOV = 15 km), where the volume extinction is considerably larger, direct information about rain below the clouds is usually masked. Based on the above idea, 37 GHz observations with a 30 km FOV from SMMR and SSM/I are selected to develop an empirical method for the estimation of rain rate. In this method, the statistics of the observed T sub b's at 37 GHz in a rain storm are related to the rain rate statistics in that storm. The underestimation of rain rate, arising from the inability of the radiometer to respond sensitively to rain rate above a given threshold is rectified in this technique with the aid of two parameters that depend on the total water vapor content in the atmosphere. The retrieved rain rates compare favorably with radar observations and monthly mean global maps of rain derived from this technique over the oceans.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: Journal of Applied Meteorology (ISSN 0894-8763); 31; 6, Ju; 532-552
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...