ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (37)
  • 1995-1999  (10)
  • 1990-1994  (27)
  • 1996  (10)
  • 1992  (7)
  • 1991  (12)
  • 1990  (8)
  • 1
    ISSN: 1432-1939
    Keywords: δ13C ; δ15N ; Nitrogen assimilation ; Forest decline ; Picea abies ; Stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Natural carbon and nitrogen isotope ratios were measured in different compartments (needles and twigs of different ages and crown positions, litter, understorey vegetation, roots and soils of different horizons) on 5 plots of a healthy and on 8 plots of a declining Norway spruce (Picea abies (L.) Karst.) forest in the Fichtelgebirge (NE Bavaria, Germany), which has recently been described in detail (Oren et al. 1988a; Schulze et al. 1989). The δ13C values of needles did not differ between sites or change consistently with needle age, but did decrease from the sun-to the shade-crown. This result confirms earlier conclusions from gas exchange measurements that gaseous air pollutants did no long-lasting damage in an area where such damage was expected. Twigs (δ13C between-25.3 and-27.8‰) were significantly less depleted in 13C than needles (δ13C between-27.3 and-29.1‰), and δ13C in twigs increased consistently with age. The δ15N values of needles ranged between-2.5 and-4.1‰ and varied according to stand and age. In young needles δ15N decreased with needle age, but remained constant or increased in needles that were 2 or 3 years old. Needles from the healthy site were more depleted in 15N than those from the declining site. The difference between sites was greater in old needles than in young ones. This differentiation presumably reflects an earlier onset of nitrogen reallocation in needles of the declining stand. δ15N values in twigs were more negative than in needles (-3.5 to-5.2‰) and showed age- and stand-dependent trends that were similar to the needles. δ15N values of roots and soil samples increased at both stands with soil depth from-3.5 in the organic layer to +4‰ in the mineral soil. The δ15N values of roots from the mineral soil were different from those of twigs and needles. Roots from the shallower organic layer had values similar to twigs and needles. Thus, the bulk of the assimilated nitrogen was presumably taken up by the roots from the organic layer. The problem of separation of ammonium or nitrate use by roots from different soil horizons is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 427-429 
    ISSN: 1432-1939
    Keywords: Insectivorous plants ; Insect capture ; Leaf growth ; Nitrogen storage ; Drosera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Rates of insect capture increased with leaf area in the insectivorous plant Drosera rotundifolia, and growth of new leaves was related to insect capture. However, increased leaf growth was counterbalanced by leaf abscission which was in turn related to insect capture and leaf growth. Leaf loss equaled leaf growth in plants having natural rate of insect capture. A large proportion of the nitrogen gain from prey was stored in the hypocotyl; it was estimated from feeding experiments that about 24% to 30% of the nitrogen stored in the hypocotyl after winter originated from insect capture in the previous season. The effect of insect capture is discussed in relation to the life cycle of Drosera.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Patagonia-vegetation ; Root distribution ; 13C-, 18O-, D-Isotope composition ; Water ; Plant succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Above-and belowground biomass distribution, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradient in Patagonia (44–45°S). Sites, ranging from those with Nothofagus forest with high annual rainfall (770 mm) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 mm), were chosen to test whether rooting depth compensates for low rainfall. Along this gradient, both mean above-and belowground biomass and leaf area index decreased, but average carbon isotope ratios of sun leaves remained constant (at-27‰), indicating no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80–0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2–3 m depth. The depth profile of oxygen and hydrogen isotope ratios of soil water corresponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2–3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from recent rain events in the topsoil and not from water-saturated soils at greater depth. However, this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling establishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Deep roots function ; Terrestrial vegetation ; Biomes ; Plant forms ; Root depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Terrestrial biomes ; Cumulative root fraction ; Root biomass ; Rooting density ; Soil depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Understanding and predicting ecosystem functioning (e.g., carbon and water fluxes) and the role of soils in carbon storage requires an accurate assessment of plant rooting distributions. Here, in a comprehensive literature synthesis, we analyze rooting patterns for terrestrial biomes and compare distributions for various plant functional groups. We compiled a database of 250 root studies, subdividing suitable results into 11 biomes, and fitted the depth coefficient β to the data for each biome (Gale and Grigal 1987). β is a simple numerical index of rooting distribution based on the asymptotic equation Y=1-βd, where d = depth and Y = the proportion of roots from the surface to depth d. High values of β correspond to a greater proportion of roots with depth. Tundra, boreal forest, and temperate grasslands showed the shallowest rooting profiles (β=0.913, 0.943, and 0.943, respectively), with 80–90% of roots in the top 30 cm of soil; deserts and temperate coniferous forests showed the deepest profiles (β=0.975 and 0.976, respectively) and had only 50% of their roots in the upper 30 cm. Standing root biomass varied by over an order of magnitude across biomes, from approximately 0.2 to 5 kg m-2. Tropical evergreen forests had the highest root biomass (5 kg m-2), but other forest biomes and sclerophyllous shrublands were of similar magnitude. Root biomass for croplands, deserts, tundra and grasslands was below 1.5 kg m-2. Root/shoot (R/S) ratios were highest for tundra, grasslands, and cold deserts (ranging from 4 to 7); forest ecosystems and croplands had the lowest R/S ratios (approximately 0.1 to 0.5). Comparing data across biomes for plant functional groups, grasses had 44% of their roots in the top 10 cm of soil. (β=0.952), while shrubs had only 21% in the same depth increment (β=0.978). The rooting distribution of all temperate and tropical trees was β=0.970 with 26% of roots in the top 10 cm and 60% in the top 30 cm. Overall, the globally averaged root distribution for all ecosystems was β=0.966 (r 2=0.89) with approximately 30%, 50%, and 75% of roots in the top 10 cm, 20 cm, and 40 cm, respectively. We discuss the merits and possible shortcomings of our analysis in the context of root biomass and root functioning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: C4 photosynthesis ; δ13C values ; Grass flora of Namibia ; Poaceae ; Geographic distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in δ13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the δ13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest δ13C values (−11.7 ‰) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower δ13C values (−13.4 ‰) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (−12.5 ‰) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative δ13C values than PCK species and δ13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, δ13C values decreased from −11 ‰ in the inland region (600 mm precipitation) to −15 ‰ near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 77 (1990), S. 453-453 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 82 (1990), S. 355-361 
    ISSN: 1432-1939
    Keywords: Vine ; Xylem water flow ; Entadopsis ; Serjania ; Cyclanthera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A method for determining the mass flow rate of xylem water in thin stems under natural field conditions is presented. Diurnal courses of xylem water flow and stomatal conductance of the vines Entadopsis polystachya, Cyclanthera multifoliolata, and Serjania brachycarpa were examined in a tropical deciduous forest on the west coast of Mexico. E. polystachya (leaf area 23.6 m2) had a maximum water flow rate of 6.50 kg h-1 or 1.44 kg cm-2 stem basal area h-1; daily water use was 2.00 kg m-2 leaf area day-1. S. brachycarpa (leaf area 4.5 m2) and C. multifoliolata (leaf area 3.6 m2) had a maximum water flow rate of 0.72 and 0.19 kg h-1 or 0.63 and 0.92 kg cm-2 stem basal area h-1. Daily water use was 1.26 and 0.39 kg m-2 leaf area day-1, respectively. The daily courses of xylem water flow were strongly influenced by the orientation of the leaf area to irradiance and its intensity. While leaves of E. polystachya had a constant high stomatal conductance during the day, S. brachycarpa had a maximum stomatal opening in the morning followed by continuous closure during the rest of the day. In contrast to the woody species, the herbaceous C. multifoliolata exhibited a strong midday depression of stomatal conductance and wilting of its leaves. The leaf biomass accounted for 8% (Entadopsis), 16% (Serjania), and 23% (Cyclanthera) of above-ground biomass. The relation of sapwood area to leaf area supplied (Huber value) was 0.19 (Entadopsis), 0.18 (Serjania), and 0.06 (Cyclanthera) cm2 m-2
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Canopy conductance ; Canopy transpiration ; Xylem sap flow ; Humidity response of stomatal ; Nothofagus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day−1 tree−1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour. Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s−1 that is equivalent to 112 mmol m−2 s−1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m−2 s−1 at the top and 150 mmol m−2 s−1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was −27.76±0.27‰ (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Nitrogen isotope ratio ; Nutrition ; Insectivorous plants ; Drosera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Plants of Drosera species, neighbouring noncarnivorous plants, and arthropods on or near each Drosera sp. were collected at 11 contrasting habitat locations in SW Australia. At three of the sites clones of the rare glandless mutant form of D. erythrorhiza were collected alongside fully glandular counterparts. The δ 15N value (15N/14N natural isotope composition) of insect-free leaf and stem fractions was measured, and the data then used to estimate proportional dependence on insect N (%NdI) for the respective species and growth forms of Drosera. The data indicated lower %NdI values for rosette than for self-supporting erect or for climbing vine species. The latter two groups showed an average %NdI value close to 50%. The %NdI increased with length and biomass of climbing but not erect forms of Drosera. δ 15N values of stems were positively correlated with corresponding values for leaves of Drosera. Leaf material was on average significantly more 15N enriched than stems, possibly due to delayed transport of recent insect-derived N, or to discrimination against 15N in transfer from leaf to the rest of the plant. The comparison of δ 15N values of insects and arthropod prey, glandless and glandular plants of D. erythrorhiza indicated %NdI values of 14.3, 12.2 and 32.2 at the respective sites, while matching comparisons based on δ 15N of insect, reference plants and glandular plants proved less definitive, with only one site recording a positive %NdI (value of 10.4%) despite evidence at all sites of feeding on insects by the glandular plants. The use of the δ 15N technique for studying nutrition of carnivorous species and the ecological significance of insect feeding of different growth forms of Drosera growing in a large range of habitats is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...