ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (28)
  • Articles (OceanRep)  (28)
  • 2015-2019  (28)
  • 2015  (28)
Collection
  • Other Sources  (28)
Source
  • Articles (OceanRep)  (28)
Years
  • 2015-2019  (28)
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 8 (1). pp. 51-68.
    Publication Date: 2017-12-19
    Description: Large-scale fully coupled Earth system models (ESMs) are usually applied in climate projections like the IPCC (Intergovernmental Panel on Climate Change) reports. In these models internal variability is often within the correct order of magnitude compared with the observed climate, but due to internal variability and arbitrary initial conditions they are not able to reproduce the observed timing of climate events or shifts as for instance observed in the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), or the Atlantic Meridional Overturning Circulation (AMOC). Additional information about the real climate history is necessary to constrain ESMs; not only to emulate the past climate, but also to introduce a potential forecast skill into these models through a proper initialisation. We attempt to do this by extending the fully coupled climate model Max Planck Institute Earth System Model (MPI-ESM) using a partial coupling technique (Modini-MPI-ESM). This method is implemented by adding reanalysis wind-field anomalies to the MPI-ESM's inherent climatological wind field when computing the surface wind stress that is used to drive the ocean and sea ice model. Using anomalies instead of the full wind field reduces potential model drifts, because of different mean climate states of the unconstrained MPI-ESM and the partially coupled Modini-MPI-ESM, that could arise if total observed wind stress was used. We apply two different reanalysis wind products (National Centers for Environmental Prediction, Climate Forecast System Reanalysis (NCEPcsfr) and ERA-Interim reanalysis (ERAI)) and analyse the skill of Modini-MPI-ESM with respect to several observed oceanic, atmospheric, and sea ice indices. We demonstrate that Modini-MPI-ESM has a significant skill over the time period 1980–2013 in reproducing historical climate fluctuations, indicating the potential of the method for initialising seasonal to decadal forecasts. Additionally, our comparison of the results achieved with the two reanalysis wind products NCEPcsfr and ERAI indicates that in general applying NCEPcsfr results in a better reconstruction of climate variability since 1980.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Poster] In: EGU General Assembly 2015, 12.–17.04.2015 , Vienna, Austria .
    Publication Date: 2015-04-23
    Description: Variations in the global tropospheric zonal mean zonal wind ([U]) during boreal winter are investigated using Rotated Empirical Orthogonal Functions applied to monthly means. The first two modes correspond to the Northern and Southern Annular Mode and modes 3 and 4 represent variability in the tropics. One is related to El Nino Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5 ◦ N and 5 ◦ S ([U150]e) and is related to activity of the Madden-Julian Oscillation (MJO). High amplitude of the MJO with strong precipitation anomalies over the western tropical Pacific (late MJO phases) are associated with the westerly phase of [U150]e (and vice versa). The extratropical response to [U150]e is investigated using linear regressions of 500 hPa geopotential height onto the [U150]e time series. Use is made of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Center for Medium Range Weather Forecasts (ECMWF) model in which the tropical atmosphere is relaxed towards reanalysis data. Both the 45- year ECMWF reanalysis (ERA-40) and the ERA-Interim reanalysis data sets are used for the relaxation experiment as well as for the regression analysis. Therefore the analysis is covering 52 boreal winters from 1960/61 to 2012/13. The regression analysis reveals a robust shift of the Aleutian low and a wave train across the North Atlantic associated with [U150]e. It is found that the subtropical Rossby waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]e. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-16
    Description: Classical theory concerning theEliassen–Palmrelation is extended in this study to allowfor a unified treatment of midlatitude inertia–gravity waves (MIGWs), midlatitude Rossby waves (MRWs), and equatorial waves (EQWs). A conservation equation for what the authors call the impulse-bolus (IB) pseudomomentum is useful, because it is applicable to ageostrophic waves, and the associated three-dimensional flux is parallel to the direction of the group velocity of MRWs. The equation has previously been derived in an isentropic coordinate system or a shallow-water model. The authors make an explicit comparison of prognostic equations for the IB pseudomomentum vector and the classical energy-based (CE) pseudomomentum vector, assuming inviscid linear waves in a sufficiently weak mean flow, to provide a basis for the former quantity to be used in an Eulerian time-mean (EM) framework. The authors investigate what makes the three-dimensional fluxes in the IB and CE pseudomomentum equations look in different directions. It is found that the two fluxes are linked by a gauge transformation, previously unmentioned, associated with a divergence-form wave-induced pressure L. The quantity L vanishes for MIGWs and becomes nonzero for MRWs and EQWs, and it may be estimated using the virial theorem. Concerning the effect of waves on the mean flow, L represents an additional effect in the pressure gradient term of both (the three-dimensional versions of) the transformed EM momentum equations and the merged form of the EMmomentumequations, the latter of which is associated with the nonacceleration theorem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Royal Meteorological Society
    In:  Quarterly Journal of the Royal Meteorological Society, 141 . pp. 153-165.
    Publication Date: 2017-04-13
    Description: A set of relaxation experiments using the ECMWF atmospheric model is used to analyse the severe European winter of 1962/63. We argue that the severe winter weather was associated with a wave train that originated in the tropical Pacific sector (where weak La Nina conditions were present) and was redirected towards Europe, a process we suggest was influenced by the combined effect of the strong easterly phase of the Quasi-Biennial Oscillation (QBO ) and unusually strong easterly winds in the upper equatorial troposphere that winter. A weak tendency towards negative North Atlantic Oscillation (NAO) conditions in December, associated with extratropical sea surface temperature and sea-ice anomalies, might have acted as a favourable preconditioning. The redirection of the wave train towards Europe culminated in the stratospheric sudden warming at the end of January 1963. We argue that in February, the sudden warming event helped maintain the negative NAO regime, allowing the severe weather to persist for a further month. A possible influence from the Madden-Julian Oscillation, as well as a role for internal atmospheric variability, is noted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-13
    Description: Tropical influence on the austral summer Southern Annular Mode (SAM) over the ERA-40 period 1960/1961–2001/2002 is investigated using (1) a partially coupled climate model (PCM) driven by observed wind stress and (2) a version of the ECMWF atmospheric model by means of a relaxation technique. We show that the tropical influence in the PCM is dominated by El Niño Southern Oscillation (ENSO) whereas the relaxation experiments suggest an additional influence independent of ENSO. In the observations, we find that the simultaneous influence of ENSO on the summer SAM was much stronger after 1979 than before, with the consequence that the ensemble mean of the PCM captures around 50 % of the interannual variance of the SAM after 1979 and less than 10 % before. Nevertheless, in the ensemble mean of the PCM, the relationship between ENSO and the summer SAM is stable throughout the whole period 1960/1961–2001/2002, and it is the individual ensemble members that exhibit a non-stationary relationship like that found in the observations. It follows that variability not related to the observed wind forcing used to drive the PCM is important for obscuring the ENSO/SAM relationship. The experiments using relaxation show that tropical forcing was important for both the interannual variability and the trend of the summer SAM, even before 1979. Adding the observed extratropical sea surface temperature and sea-ice (SSTSI) to the tropical relaxation runs improves the model performance, indicative of a positive feedback from extratropical SSTSI onto the SAM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Climate, 28 (1). pp. 168-185.
    Publication Date: 2018-01-01
    Description: Variations in the global tropospheric zonal mean zonal wind ([U]) during boreal winter are investigated using Rotated Empirical Orthogonal Functions applied to monthly means. The first two modes correspond to the Northern and Southern Annular Mode and modes 3 and 4 represent variability in the tropics. One is related to El Niño Southern Oscillation and the other has variability that is highly correlated with the time series of [U] at 150 hPa between 5°N and 5°S ([U150]E) and is related to activity of the Madden-Julian Oscillation. The extratropical response to [U150]E is investigated using linear regressions of 500 hPa geopotential height onto the [U150]E time series. We make use of reanalysis data and of the ensemble mean output from a relaxation experiment using the European Center for Medium Range Weather Forecasts model in which the tropical atmosphere is relaxed towards reanalysis data. The regression analysis reveals that a shift of the Aleutian low and a wave train across the North Atlantic are associated with [U150]E. We find that the subtropical waveguides and the link between the North Pacific and North Atlantic are stronger during the easterly phase of [U150]E. The wave train over the North Atlantic is associated with Rossby wave sources over the subtropical North Pacific and North America. Finally, we show that a linear combination of both [U150]E and the Quasi Biennial Oscillation in the lower stratosphere can explain the circulation anomalies of the anomalously cold European winter of 1962/63 when both were in an extreme easterly phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Poster] In: Joint MiKlip/SPECS Meeting on Decadal Climate Prediction, 23.-26.02.2015, Offenbach .
    Publication Date: 2015-03-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Physical Oceanography, 45 . pp. 1709-1734.
    Publication Date: 2017-12-19
    Description: We perform eddy-resolving and high-vertical-resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper ocean currents. Two main simulations are discussed: Solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform; and Solution 2, with realistic coastlines and with an annual cycle of wind forcing varying zonally. Somewhat surprisingly, Solution 1 produces the more realistic DEC: The large-vertical-scale currents (Equatorial Intermediate Currents or EICs) are found over a large zonal portion of the basin, and the small-vertical-scale equatorial currents (Equatorial Deep Jets or EDJs) form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. We demonstrate that both types of currents arise from the rectification of DEIV, consistent with previous theories. We also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In Solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, we find that the main reason for this weaker DEIV is the use of realistic coastlines in Solution 2. It remains to be determined, what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: 95. American Meteorological Society Annual Meeting, 04.-08.01.2015, Phoenix, USA .
    Publication Date: 2015-12-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-13
    Description: Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...