ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-09-21
    Type: paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-09-21
    Type: inbook
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-12-01
    Print ISSN: 0022-0477
    Electronic ISSN: 1365-2745
    Topics: Biology
    Published by Wiley on behalf of British Ecological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-08-01
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Boreal forest ; Nitrogen, phosphorus, and cation nutrition ; Stable isotopes ; Picea glauca Calamagrostis Vaccinium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Natural abundances of nitrogen isotopes, δ15N, indicate that, in the same habitat, Alaskan Picea glauca and P. mariana use a different soil nitrogen compartment from the evergreen shrub Vaccinium vitis-idaea or the deciduous grass Calamagrostis canadensis. The very low δ15N values (-7.7 ‰) suggest that (1) Picea mainly uses inorganic nitrogen (probably mainly ammonium) or organic N in fresh litter, (2) Vaccinium (-4.3 ‰) with its ericoid mycorrhizae uses more stable organic matter, and (3) Calamagrostis (+0.9 ‰) exploits deeper soil horizons with higher δ15N values of soil N. We conclude that species limited by the same nutrient may coexist by drawing on different pools of soil N in a nutrient-deficient environment. The differences among life-forms decrease with increasing N availability. The different levels of δ15N are associated with different nitrogen concentrations in leaves, Picea having a lower N concentration (0.62 mmol g−1) than Vaccinium (0.98 mmol g−1) or Calamagrostis (1.33 mmol g−1). An extended vector analysis by Timmer and Armstrong (1987) suggests that N is the most limiting element for Picea in this habitat, causing needle yellowing at N concentrations below 0.5 mmol g−1 or N contents below 2 mmol needle−1. Increasing N supply had an exponential effect on twig and needle growth. Phosphorus, potassium and magnesium are at marginal supply, but no interaction between ammonium supply and needle Mg concentration could be detected. Calcium is in adequate supply on both calcareous and acidic soils. The results are compared with European conditions of excessive N supply from anthropogenic N depositions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key wordsPinus sylvestris ; Siberia ; Biomass ; Self-thinning ; Forest fire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was 〉100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 60-62 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Plant water use (transpiration, E) is regulated by the available energy (Rn) and air saturation deficit (D) above the canopy (Fig. \a}. The relative importance of these two factors in regulating plant or ecosystem water use is theoretically summarized in a decoupling coefficient, Q, (OQ 1) derived ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant).When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production.The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars (Caspar et al. 1986; W. Schulze et al. 1991). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency.In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth.External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...