ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
  • 1990-1994
  • 1995  (9)
Collection
Years
  • 1995-1999  (9)
  • 1990-1994
Year
  • 1
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-02-01
    Print ISSN: 0168-1923
    Electronic ISSN: 1873-2240
    Topics: Geography , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-10-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-04-01
    Print ISSN: 0140-7791
    Electronic ISSN: 1365-3040
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    ISSN: 1432-1939
    Keywords: Picea abies (L.) Karst ; Ammonium ; Nitrate ; 15N ; Tracer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Carbohydrate ; Growth ; Nitrogen ; Phaseolus lunatus ; Storage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth, photosynthesis, and storage of nitrogen (N) and total non-structural carbohydrates (TNC) of a perennial wild type and an annual cultivar of lima bean (Phaseolus lunatus) were examined at different light intensities and N supplies. Relative growth rate and photosynthesis increased with light and N availability. N limitation enhanced biomass allocation into root rather than into shoot, while light limitation enhanced growth of leaf area. The TNC concentrations increased with light intensity and thus with photosynthesis, while the concentrations of organic N and nitrate decreased. Increasing N supply had the opposite effect. Therefore, TNC and organic N concentrations were negatively correlated (r=−0.90). Pool size of N or TNC increased with N and light availability when either resource was non-limiting, but increased little or remained constant when either resource was limiting. Storage reached a minimum when both resources were supplied at an equal rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Root exudates were sampled from detopped root systems of castor bean (Ricinus communis). Different volume flux rates were imposed by changing the pneumatic pressure around the root system using a Passioura-type pressure chamber. The concentrations of cations, anions, amino acids, organic acids and abscisic acid decreased hyperbolically when flux rates increased from pure root exudation up to values typical for transpiring plants. Concentrations at low and high fluxes differed by up to 40 times (phosphate) and the ratio of substances changed by factors of up to 10. During the subsequent reduction of flux produced by lowering the pneumatic pressure in the root pressure chamber, the concentrations and ratios of substances deviated (at a given flux rate) from those found when flux was increased. The flux dependence of exudate composition cannot therefore be explained by a simple dilution mechanism. Xylem sap samples from intact, transpiring plants were collected using a Passioura-type root pressure chamber. The concentrations of the xylem sap changed diurnally. Substances could be separated into three groups: (1) calcium, magnesium and amino acid concentrations correlated well with the values expected from their concentration-flux relationships, whereas (2) the concentrations of sulphate and phosphate deviated from the expected relationships during the light phase, and (3) nitrate and potassium concentrations in intact plants varied in completely the opposite manner from those in isolated root systems. Abscisic acid concentrations in the root exudate were dependent on the extent of water use and showed strong diurnal variations in the xylem sap of intact plants even in droughtstressed plants. Calculations using root exudates overestimated export from the root system in intact plants, with the largest deviation found for proton flux (a factor of 10). We conclude that root exudate studies cannot be used as the sole basis for estimating fluxes of substances in the xylem of intact plants. Consequences for studying and modelling xylem transport in whole plants are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters.For canopies low in total N, daily assimilation rates are ∼10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation.Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...