ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-25
    Description: Central Asia is one of the seismically most active regions in the world. Its complex seismicity due to the collision of the Eurasian and Indian plates has resulted in some of the world’s largest intra-plate events over history. The region is dominated by reverse faulting over strike slip and normal faulting events. The GSHAP project (1999), aiming at a hazard assessment on a global scale, indicated that the region of Central Asia is characterized by peak ground accelerations for 10% probability of exceedance in 50 years as high as 9 m/s 2 . In this study, carried out within the framework of the EMCA project (Earthquake Model Central Asia), the area source model and different kernel approaches are used for a probabilistic seismic hazard assessment (PSHA) for Central Asia. The seismic hazard is assessed considering shallow (depth 〈 50 km) seismicity only and employs an updated (with respect to previous projects) earthquake catalog for the region. The seismic hazard is calculated in terms of macroseismic intensity (MSK-64), intended to be used for the seismic risk maps of the region. The hazard maps, shown in terms of 10% probability of exceedance in 50 years, are derived by using the OpenQuake software [Pagani et al. 2014], which is an open source software tool developed by the GEM (Global Earthquake Model) foundation. The maximum hazard observed in the region reaches an intensity of around 8 in southern Tien Shan for 475 years mean return period. The maximum hazard estimated for some of the cities in the region, Bishkek, Dushanbe, Tashkent and Almaty, is between 7 and 8 (7-8), 8.0, 7.0 and 8.0 macroseismic Intensity, respectively, for 475 years mean return period, using different approaches. The results of different methods for assessing the level of seismic hazard are compared and their underlying methodologies are discussed.
    Print ISSN: 1593-5213
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Publication Date: 2015-04-25
    Description: Global Seismic Hazard Assessment Program - or simply GSHAP, when launched, almost two decades ago, aimed at establishing a common framework to evaluate the seismic hazard over geographical large-scales, i.e. countries, regions, continents and finally the globe. Its main product, the global seismic hazard map was a milestone, unique at that time and for a decade have served as the main reference worldwide. Today, for most of the Earth’s seismically active regions such Europe, Northern and Southern America, Central and South-East Asia, Japan, Australia, New Zealand, the GSHAP seismic hazard map is outdated. The rapid increase of the new data, advance on the earthquake process knowledge, technological progress, both hardware and software, contributed all in updates of the seismic hazard models. We present herein, a short retrospective overview of the achievements as well as the pitfalls of the GSHAP. Further, we describe the next generation of seismic hazard models, as elaborated within the Global Earthquake Model, regional programs: the 2013 European Seismic Hazard Model, the 2014 Earthquake Model for Middle East, and the 2015 Earthquake Model of Central Asia. Later, the main characteristics of these regional models are summarized and the new datasets fully harmonized across national borders are illustrated for the first time after the GSHAP completion.
    Print ISSN: 1593-5213
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...