ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-09
    Description: Recent studies reveal that midlatitude ionospheric irregularities are less understood due to lack of models and observations that can explain the characteristics of the observed wave structures. In this paper, the cascading processes of both the Temperature Gradient Instability (TGI) and the Gradient Drift Instability (GDI) are investigated as the cause of these irregularities. Based on observations obtained during a coordinated experiment between the Millstone Hill Incoherent Scatter Radar (ISR) and the Blackstone SuperDARN radar, a time series for the growth rate of both TGI and GDI is calculated for observations in the sub-auroral ionosphere under both quiet and disturbed geomagnetic conditions. Recorded GPS scintillation data are analyzed to monitor the amplitude scintillations and to obtain the spectral characteristics of irregularities producing ionospheric scintillations. Spatial power spectra of the density fluctuations associated with the TGI from nonlinear plasma simulations are compared with both the GPS scintillation spectral characteristics and previous in-situ satellite spectral measurements. The spectral comparisons suggest that initially TGI or/and GDI irregularities are generated at large scale size (km-scale) and the dissipation of the energy associated with these irregularities occurs by generating smaller and smaller (decameter-scale) irregularities. The alignment between experimental, theoretical, and computational results of this study suggests that, in spite of expectations from linear growth rate calculations, cascading processes involving TGI and GDI are likely responsible for the midlatitude ionospheric irregularities associated with GPS scintillations during disturbed times.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-30
    Description: The Super Dual Auroral Radar Network (SuperDARN) is a network of HF radars that are traditionally used for monitoring phenomena in the Earth's ionosphere at high latitudes. The radar backscatter is due primarily to reflections from plasma irregularities in the ionosphere, known as ionospheric scatter, and to signal reflected from the ground, known as ground scatter. In recent years, SuperDARN has expanded to midlatitudes to provide improved coverage of the auroral region during times of enhanced geomagnetic activity. In addition to high-speed auroral flows, the radars commonly see a variety of low-velocity plasma drift associated with the quiet time midlatitude ionosphere. The traditional method of distinguishing between scatter types in SuperDARN data was developed for high latitudes and depends solely on the Doppler velocity and Doppler spectral width of each data point. This method has proven inadequate for identifying quiet time midlatitude ionospheric scatter. In this paper, we present a new technique for the classification of SuperDARN data, which operates on a distributed range time basis and involves procedures similar to “depth first search.” Using the new method for classification of ground and ionospheric scatter, we show a dramatic improvement in the determination of ionospheric scatter within extended (〉1 h) events. Compared to the traditional method, the number of ionospheric measurements resolved increases by more than 50%. The new classification algorithm identifies discrete events of ionospheric scatter and can be applied to statistical analysis of event occurrence and characteristics.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-12
    Description: [1]  The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars for monitoring plasma flows in the high and mid latitude E and F regions of the ionosphere. The targets of SuperDARN radars are plasma irregularities which can flow up to several kilometers per second and can be detected out to ranges of several thousand kilometers. We have developed a simulator which is able to model SuperDARN data realistically. The simulation system is composed of four separate parts: model scatterers, model collective properties, a model radar, and post-processing. Importantly, the simulator is designed using the collective scatter approach which accurately captures the expected statistical fluctuations of the radar echoes. The output of the program can represent either receiver voltages or autocorrelation functions (ACFs) in standard SuperDARN file formats. The simulator is useful for testing and implementation of SuperDARN data processing software and for investigation of how radar data and performance change when the nature of the irregularities or radar operation varies. The companion paper demonstrates the application of simulated data to evaluate the performance of different ACF fitting algorithms. The data simulator is applicable to other ionospheric radar systems.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-12
    Description: [1]  The Super Dual Auroral Radar Network (SuperDARN) is a worldwide chain of HF radars which monitor plasma dynamics in the ionosphere. Autocorrelation functions are routinely calculated from the radar returns and applied to estimate Doppler velocity, spectral width, and backscatter power. This fitting has traditionally been performed by a routine called FITACF. This routine initiates a fitting by selecting a subset of valid phase measurements and then empirically adjusting for 2 π phase ambiguities. The slope of the phase variation with lag time then provides Doppler velocity. Doppler spectral width is found by an independent fitting of the decay of power to an assumed exponential or Gaussian function. In this paper, we use simulated datato assess the performance of FITACF, as well as two other newer fitting techniques, named FITEX2 and LMFIT. The key new feature of FITEX2 is that phase models are compared in a least-squares fitting sense with the actual data phases to determine thebest fit, eliminating some ambiguities which are present in FITACF. The key new feature of LMFIT is that the complex ACF itself is fit, and Doppler velocity, spectral width, and backscatter power are solved simultaneously. We discuss some of the issues that negatively impact FITACF, and find that of the algorithms tested, LMFIT provides the best overall performance in fitting the SuperDARN ACFs. The techniques and the data simulator are applicable to other radar systems that utilize multipulse sequences to make simultaneous range and velocity determinations under aliasing conditions.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-08
    Description: Trans-ionospheric radio signals in the high-latitude polar cap are susceptible to degradation when encountering sharp electron density gradients associated with discrete plasma structures, or patches. Multi-instrument measurements of polar cap patches are examined during a geomagnetic storm interval on 22 January 2012. For the first time, we monitor the transportation of patches with high spatial and temporal resolution across the polar cap for 1-2 hours using a combination of GPS total electron content (TEC), all-sky airglow imagers (ASIs), and SuperDARN HF radar backscatter. Simultaneous measurements from these datasets allow for continuous tracking of patch location, horizontal extent, and velocity despite adverse observational conditions for the primary technique (e.g., sunlit regions in the ASI data). Spatial collocation between patch-like features in relatively coarse but global GPS TEC measurements and those mapped by high-resolution ASI data was very good, indicating that GPS TEC can be applied to track patches continuously as they are transported across the polar cap. In contrast to previous observations of cigar-shaped patches formed under weakly disturbed conditions, the relatively narrow dawn-dusk extent of patches in the present interval (500-800 km) suggests association with a longitudinally-confined plasma source region, such as storm enhanced density (SED) plume. SuperDARN observations show that the backscatter power enhancements corresponded to the optical patches, and for the first time we demonstrate that the motion of the optical patches was consistent with background plasma convection velocities.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...