ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Journal of Geophysical Research JGR - Space Physics  (2)
  • 7531
Collection
  • Articles  (2)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2013-01-20
    Description: [1]  We present a detailed case study of the electrodynamics of a high-latitude trough observed at ~12 UT (~1 MLT) on March 8, 2008 using multiple instruments, including incoherent scattering radar (ISR), GPS total electron content (TEC), magnetometers and auroral imager. The electron density within the trough dropped as much as 80% within 6 minutes. This trough was collocated with a counter-clockwise convection flow vortex, indicating divergent horizontal electric fields and currents. Together with a collocated dark area shown in auroral images, the observations provide strong evidence for an existence of downward field-aligned currents (FACs) collocated with the high-latitude trough. This is further supported by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) results. In addition, the downward FACs formed at about the same time as a substorm onset and east of the Harang reversal, suggesting it is part of the substorm current wedge. It has long been a puzzle why this type of high-latitude trough predominantly occurs just east of the Harang reversal in the post-midnight sector. We suggest that the high-latitude trough is associated with the formation of downward FACs of the substorm current system, which usually occur just east of the Harang reversal. In addition, we find that the ionospheric electron temperature within the high latitude trough decreases in the F region while increasing in the E region. We discuss possible mechanisms responsible for the complex change in electron temperature, such as ion composition change and/or presence of downward FACs.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-14
    Description: Recent radar and optical observations suggested that localized fast flows in the polar cap precede disturbances within the nightside auroral oval. However, how commonly this connection occurs has been difficult to examine due to limited coverage of radar flow measurements and diffuse and dim nature of airglow patches. Polar cap arcs are also associated with fast flows in the polar cap and appear much brighter than patches, allowing evaluation of the interaction between polar cap structures and nightside aurora more definitively. We have surveyed data during 6 winter seasons and selected quasi-steady polar cap arcs lasting 〉1 h. Thirty four arcs are found and for the majority (~85%) of them, as they extend equatorward from high latitude, their contact with the nightside auroral poleward boundary is associated with new and substantial intensifications within the oval. These intensifications are localized (〈~1 h MLT) and statistically occur within 10 min and ±1 h MLT from the contact. They appear as poleward boundary intensifications (PBIs) in a thick auroral oval or an intensification of the only resolvable arc within a thin oval, and the latter can also exhibit substantial poleward expansion. When radar echoes are available, they corroborate the association of polar cap arcs with localized enhanced anti-sunward flows. That the observed oval intensifications are major disturbances that only occur after the impingement of polar cap arcs and near the contact longitude suggest that they are triggered by localized fast flows coming from deep in the polar cap.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...