ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31)
  • Wiley  (31)
  • Copernicus
  • Journal of Geophysical Research JGR - Atmospheres  (19)
  • Journal of Geophysical Research JGR - Solid Earth  (11)
  • 7527
  • 7528
  • 1
    Publication Date: 2015-08-15
    Description: GPS has been extensively used to estimate tidal ground displacements, but the accuracy of this has not been systematically verified. Using more than 20 sites distributed across western Europe, we show that post-processed kinematic precise point positioning GPS with appropriately-tuned process noise constraints is capable of recovering synthetic tidal displacements inserted into real data, with a typical accuracy of 0.2 mm depending on the time series noise. The kinematic method does not result in erroneous propagation of signals from one coordinate component to another, or to the simultaneously-estimated tropospheric delay parameters. It is robust to the likely effects of day-to-day equipment and reference frame changes, and to outages in the data. A minimum data span of 4 years with at least 70% availability is recommended. Finally, we show that the method of reducing apparent coordinate time series noise by constraining the tropospheric delay to values previously estimated in static batch GPS analysis, in fact results in the suppression of true tidal signals. Using our kinematic GPS analysis approach, periodic displacements can be reliably observed at the 0.2 mm level, which is suitable for the testing and refinement of ocean tide and solid Earth response models.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-15
    Description: GPS-observed vertical ocean tide loading displacements show in Cornwall, southwest England and in Brittany, northwest France, discrepancies of 2–3 mm with predicted values based on isotropic PREM for the main tidal harmonic M 2 , yet in central Europe the agreement is better than 0.5 mm. By comparison of ocean tide models and validation with tide gauge observations, we demonstrate that the uncertainties in the former are too small to cause this disagreement. Furthermore, we find that different local models of the crust and different global elastic reference models derived from seismological observations can only reduce the observed discrepancies to 1–2 mm, which still exceeds the GPS observational uncertainty of 0.2-0.4 mm. It is customary to use the elastic properties of the Earth as given by seismic models. Previously, there has been insufficient evidence to determine how to modify these properties during the transformation from seismic to tidal frequencies to account for possible anelastic dispersion in the asthenosphere, and so this effect has been ignored. If we include this effect, then our discrepancies reduce further to 0.2-0.4 mm. This value is of the same order as the sum of the remaining errors due to uncertainties in the ocean tide models and in the GPS observations themselves. This research provides evidence in western Europe of a reduction of around 8-10% of the seismic shear modulus in the asthenosphere at tidal frequencies. In addition, we find that the asthenosphere absorption band frequencies can be represented by a constant quality factor Q .
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-17
    Description: Geochemical and isotopic data suggest that the source regions of oceanic basalts may contain pyroxenite in addition to peridotite. In order to incorporate the wide range of compositions and melting behaviors of pyroxenites into mantle melting models, we have developed a new parameterization, Melt-PX, which predicts near-solidus temperatures and extents of melting as a function of temperature and pressure for mantle pyroxenites. We used 183 high-pressure experiments (25 compositions; 0.9–5 GPa; 1150–1675 °C) to constrain a model of melt fraction vs. temperature from 5% melting up to the disappearance of clinopyroxene for pyroxenites as a function of pressure, temperature, and bulk composition. When applied to the global set of experimental data, our model reproduces the experimental F -values with a standard error of estimate of 13% absolute; temperatures at which the pyroxenite is 5% molten are reproduced with a standard error of estimate of 30 °C over a temperature range of ~500 °C and a pressure range of ~4 GPa. In conjunction with parameterizations of peridotite melting, Melt-PX can be used to model the partial melting of multi-lithologic mantle sources—including the effects of varying the composition and the modal proportion of pyroxenite in such source regions. Examples of such applications include calculations of isentropic decompression melting of a mixed peridotite + pyroxenite mantle; these show that, although the potential temperature of the upwelling mantle plays an important role in defining the extent of magma production, the composition and mass fraction of the pyroxenite also exert strong controls.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-08
    Description: This study presents the outcome of an inverse modeling inter-comparison experiment on the use of total column CO 2 retrievals from GOSAT for quantifying global sources and sinks of CO 2 . Eight research groups submitted inverse modeling results for the first year of GOSAT measurements. Inversions were carried out using only GOSAT data, a combination of GOSAT and surface measurements, and using only surface measurements. As expected, the most robust flux estimates are obtained at large scales (e.g. within 20% of the annual flux at the global scale), and they quickly diverge towards the scale of the sub-continental TRANSCOM regions and beyond (to〉100% of the annual flux). We focus our analysis on a shift in the CO 2 uptake over land from the Tropics towards the Northern Hemisphere Extra tropics of ~1 PgC/yr when GOSAT data are used in the inversions. This shift is largely driven by TRANSCOM regions Europe and Northern Africa, showing, respectively, an increased uptake and release of 0.7 and 0.9 PgC/yr. Inversions using GOSAT data show a reduced gradient between mid latitudes of the Northern Hemisphere and the Tropics, consistent with the latitudinal shift in carbon uptake. However, the reduced gradients degrade the agreement with background aircraft and surface measurements. To narrow the range of inversion-derived flux estimates will require further efforts to understand the differences not only between the retrieval schemes but also between inverse models, as their contributions to the overall uncertainty are estimated to be of similar magnitude.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-26
    Description: East Asian Summer Monsoon (EASM) rainfall impacts the world's most populous regions. Accurate EASM rainfall prediction necessitates robust palaeoclimate reconstructions from proxy data and quantitative linkage to modern climatic conditions. Many precisely-dated oxygen isotope records from Chinese stalagmites have been interpreted as directly reflecting past EASM rainfall amount variability, but recent research suggests such records instead integrate multiple hydroclimatic processes. Using a Lagrangian precipitation moisture source diagnostic, we demonstrate that EASM rainfall is primarily derived from the Indian Ocean. Conversely, Pacific Ocean moisture export peaks during winter and the moisture uptake area does not differ significantly between summer and winter, and is thus a minor contributor to monsoonal precipitation. Our results are substantiated by an accurate reproduction of summer and winter spatial rainfall distributions across China. We also correlate modern EASM rainfall oxygen isotope ratios with instrumental rainfall amount and our moisture source data. This analysis reveals that the strength of the source effect is geographically variable, and differences in atmospheric moisture transport may significantly impact the isotopic signature of EASM rainfall at the Hulu, Dongge and Wanxiang Cave sites. These results improve our ability to isolate the rainfall amount signal in palaeomonsoon reconstructions and indicate that precipitation across central and eastern China will directly respond to variability in Indian Ocean moisture supply.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-04
    Description: We investigate the upper tropospheric distribution of methane (CH4) at low latitudes based on the analysis of air samples collected from aboard passenger aircraft. The distribution of CH4 exhibits spatial and seasonal differences, such as the pronounced seasonal cycles over tropical Asia and elevated mixing ratios over central Africa. Over Africa, the correlations of methane, ethane, and acetylene with carbon monoxide indicate that these high mixing ratios originate from biomass burning as well as from biogenic sources. Upper tropospheric mixing ratios of CH4 were modeled using a chemistry transport model. The simulation captures the large-scale features of the distributions along different flight routes, but discrepancies occur in some regions. Over Africa, where emissions are not well constrained, the model predicts a too steep interhemispheric gradient. During summer, efficient convective vertical transport and enhanced emissions give rise to a large-scale CH4 maximum in the upper troposphere over subtropical Asia. This seasonal (monsoonal) cycle is analyzed with a tagged tracer simulation. The model confirms that in this region convection links upper tropospheric mixing ratios to regional sources on the Indian subcontinent, subtropical East Asia, and Southeast Asia. This type of aircraft data can therefore provide information about surface fluxes.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-22
    Description: Carbon monoxide (CO) and other atmospheric trace constituents were measured from onboard an Airbus 340-600 passenger aircraft in the upper troposphere (UT) between south China and the Philippines during Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights from May 2005 until March 2008. A total of 132 events having CO enhancements were observed in the UT over the region during the 81 CARIBIC flights from Frankfurt, Germany, to Manila, Philippines, with a stopover in Guangzhou, China. Among these, 51 high-CO events with enhancements more than 50 ppb above background were observed. For these events enhancements ranged from 52.7 to 221.3 ppb and persisted for 3 to 78 min (∼40 to 1200 km), indicating an influence of strong pollution from biomass/biofuel/fossil fuel burning on the trace gas composition of the UT. Back trajectory analysis shows that south China, the Indochinese Peninsula, and the Philippines/Indonesia are the main source regions of the high-CO events. The composition of air parcels originating from south China was found to be primarily influenced by anthropogenic urban/industrial emissions, while emissions from biomass/biofuel burning contributed substantially to CO enhancements from the Indochinese Peninsula. During the Philippines/Indonesia events, air parcel composition suggests contributions from both biomass/biofuel burning and urban/industrial sources. Long-range transport of air parcels from northeast Asia and India also contributed to CO enhancements in the UT over the region. The general features of regional influence, typical cases, and the contributions of biomass/biofuel burning and anthropogenic emissions are presented and discussed to characterize the air parcels during the observed high-CO events.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-02-05
    Description: In November 2007 we conducted a water column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. On 26 conductivity-temperature-depth casts and tows we measured temperature, conductivity, pressure, and light scattering and also collected discrete samples for helium isotopes, methane, and pH. The 3He/4He isotope ratio, an unambiguous indicator of hydrothermal input, showed a clear excess above background at 6 of the 10 submarine volcanoes surveyed. Marsili seamount had the highest anomaly, where the 3He/4He ratio reached a δ3He value of 23% at 610 m depth compared with background values of ∼5%. Smaller but distinct δ3He anomalies occurred over Palinuro, Enarete, Eolo, Sisifo, and Secca del Capo. Although hydrothermal emissions are known to occur offshore of some Aeolian subaerial volcanoes, and hydrothermal deposits have been sampled throughout the arc, our results are the first to confirm active discharge on Marsili, Enarete, Eolo, Sisifo, and Secca del Capo. Samples collected over Lametini, Filicudi North, Alicudi North, and Alcione had δ3He near the regional background values, suggesting either absence of, or very weak, hydrothermal activity on these seamounts. Hydrocasts between the volcanoes revealed a consistent δ3He maximum between 11% and 13% at 2000 m depth throughout the SE Tyrrhenian Sea. The volcanoes of the Aeolian arc and the Marsili back arc, all
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2011-12-30
    Description: Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2 (CO2ff, derived from Δ14CO2 observations). The five-year TAP record shows high CO2ff when local air comes from the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO2ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO2ff. Biospheric CO2 contributes substantially to total CO2 variability at both sites, even in winter when non-fossil CO2 sources (including photosynthesis, respiration, biomass burning and biofuel use) contribute 20–30% of the total CO2 enhancement. Carbon monoxide (CO) correlates strongly with CO2ff. The SDZ and TAP far-field (China influenced) samples have CO: CO2ff ratios (RCO:CO2ff) of 47 ± 2 and 44 ± 3 ppb/ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low RCO:CO2ff of 13 ± 3 ppb/ppm, slightly higher than bottom-up inventories, but consistent with emission ratios for other developed nations. We compare our CO2ff observations with modeled CO2ff using the FLEXPART Lagrangian particle dispersion model convolved with a bottom-up CO2ff emission inventories. The modeled annual mean CO2ff mole fractions are consistent with our observations when the model inventory includes the reported 63% increase in Chinese emissions from 2004 to 2010, whereas a model version which holds Chinese emissions flat is unable to replicate the observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...