ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • Mineralogical Magazine 76: 1133-1152.  (2)
  • Applied Surface Science. 2004; 234(1-4): 341-348. Published 2004 Jul 01. doi: 10.1016/j.apsusc.2004.05.257.  (1)
  • 7497
  • 1018
  • 102049
Collection
  • Articles  (8)
Journal
Topic
  • 1
    Publication Date: 2012-10-08
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeans = 1.82(3) and Dcalc = 1.79 g cm−3. Hielscherite is optically uniaxial (−), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d,Å(I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-01
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeans = 1.82(3) and Dcalc = 1.79 g cm−3. Hielscherite is optically uniaxial (−), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d,Å(I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈div data-abstract-type="normal"〉〈p〉The new mineral stefanweissite, IMA2018-020, was discovered in sanidinite volcanic ejecta from the Laach Lake (Laacher See) paleovolcano, Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, nosean, biotite, augite, titanite, ferriallanite-(La), magnetite, baddeleyite and a pyrochlore-group mineral. Stefanweissite is brown and reddish-brown, with adamantine lustre; the streak is light brown to yellow. It forms long-prismatic crystals up to 0.03 mm 〈span〉×〈/span〉 0.07 mm 〈span〉×〈/span〉 1.0 mm and acicular crystals up to 2 mm long and 0.02 mm thick typically combined in radiated aggregates in cavities in sanidinite. 〈span〉D〈/span〉〈span〉calc.〈/span〉 = 5.254 g/cm〈span〉3〈/span〉. The mean refractive index calculated from the Gladstone–Dale equation is 2.260. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition is (electron microprobe, wt.%): CaO 7.63, MnO 2.51, FeO 7.86, Al〈span〉2〈/span〉O〈span〉3〈/span〉 0.25, La〈span〉2〈/span〉O〈span〉3〈/span〉 2.28, Ce〈span〉2〈/span〉O〈span〉3〈/span〉 6.54, Pr〈span〉2〈/span〉O〈span〉3〈/span〉 1.01, Nd〈span〉2〈/span〉O〈span〉3〈/span〉 1.59, ThO〈span〉2〈/span〉 3.71, UO〈span〉2〈/span〉 1.09, TiO〈span〉2〈/span〉 17.32, ZrO〈span〉2〈/span〉 28.03, HfO〈span〉2〈/span〉 0.91, Nb〈span〉2〈/span〉O〈span〉5〈/span〉 19.96, total 99.69. The empirical formula based on 14 O atoms per formula unit is Ca〈span〉1.13〈/span〉(Ce〈span〉0.33〈/span〉La〈span〉0.12〈/span〉Nd〈span〉0.08〈/span〉Pr〈span〉0.05〈/span〉)〈span〉Σ0.58〈/span〉Th〈span〉0.12〈/span〉U〈span〉0.03〈/span〉Mn〈span〉0.29〈/span〉Fe〈span〉0.91〈/span〉Al〈span〉0.04〈/span〉Zr〈span〉1.89〈/span〉Hf〈span〉0.04〈/span〉Ti〈span〉1.80〈/span〉Nb〈span〉1.19〈/span〉O〈span〉14〈/span〉. The simplified formula is (Ca,〈span〉REE〈/span〉)〈span〉2〈/span〉Zr〈span〉2〈/span〉(Nb,Ti)(Ti,Nb)〈span〉2〈/span〉Fe〈span〉2+〈/span〉O〈span〉14〈/span〉. Stefanweissite is orthorhombic, with space group 〈span〉Cmca〈/span〉. The unit-cell parameters are: 〈span〉a〈/span〉 = 7.2896(4) Å, 〈span〉b〈/span〉 = 14.1435(5) Å, 〈span〉c〈/span〉 = 10.1713(4) Å and 〈span〉V〈/span〉 = 1048.68(7) Å〈span〉3〈/span〉. The crystal structure was solved using single-crystal X-ray diffraction data. Stefanweissite is an analogue of zirconolite-3〈span〉O〈/span〉 with Nb dominant over Ti in one of two octahedral sites. The strongest lines of the powder X-ray diffraction pattern [〈span〉d〈/span〉, Å (〈span〉I〈/span〉, %) (〈span〉hkl〈/span〉)] are: 2.983(100)(202), 2.897(71)(042), 1.828(38)(154, 400, 333), 1.793(25)(244), 1.767(16)(080), 1.517(10)(282), 1.187(19)(483, 1.11.3, 602). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the registration number 5191/1.〈/p〉〈/div〉
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-21
    Description: The new mineral stefanweissite, IMA2018-020, was discovered in sanidinite volcanic ejecta from the Laach Lake (Laacher See) paleovolcano, Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, nosean, biotite, augite, titanite, ferriallanite-(La), magnetite, baddeleyite and a pyrochlore-group mineral. Stefanweissite is brown and reddish-brown, with adamantine lustre; the streak is light brown to yellow. It forms long-prismatic crystals up to 0.03 mm × 0.07 mm × 1.0 mm and acicular crystals up to 2 mm long and 0.02 mm thick typically combined in radiated aggregates in cavities in sanidinite. Dcalc. = 5.254 g/cm3. The mean refractive index calculated from the Gladstone–Dale equation is 2.260. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition is (electron microprobe, wt.%): CaO 7.63, MnO 2.51, FeO 7.86, Al2O3 0.25, La2O3 2.28, Ce2O3 6.54, Pr2O3 1.01, Nd2O3 1.59, ThO2 3.71, UO2 1.09, TiO2 17.32, ZrO2 28.03, HfO2 0.91, Nb2O5 19.96, total 99.69. The empirical formula based on 14 O atoms per formula unit is Ca1.13(Ce0.33La0.12Nd0.08Pr0.05)Σ0.58Th0.12U0.03Mn0.29Fe0.91Al0.04Zr1.89Hf0.04Ti1.80Nb1.19O14. The simplified formula is (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Stefanweissite is orthorhombic, with space group Cmca. The unit-cell parameters are: a = 7.2896(4) Å, b = 14.1435(5) Å, c = 10.1713(4) Å and V = 1048.68(7) Å3. The crystal structure was solved using single-crystal X-ray diffraction data. Stefanweissite is an analogue of zirconolite-3O with Nb dominant over Ti in one of two octahedral sites. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.983(100)(202), 2.897(71)(042), 1.828(38)(154, 400, 333), 1.793(25)(244), 1.767(16)(080), 1.517(10)(282), 1.187(19)(483, 1.11.3, 602). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the registration number 5191/1.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-01
    Description: Hielscherite, ideally Ca3Si(OH)6(SO4)(SO3)·11H2O, (IMA 2011-037) is the first ettringite-group mineral with essential sulfite. We have identified a continuous natural solid-solution series from endmember thaumasite, Ca3Si(OH)6(SO4)(CO3)·12H2O, to a composition with at least 77 mol.% endmember hielscherite. In this series, the SO3:CO3 ratio is variable, whereas the SO4 content remains constant. Compositions with more than 50 mol.% endmember hielscherite have only been found at Graulay quarry near Hillesheim in the western Eifel Mountains, Rhineland-Palatinate, where they occur with phillipsite-K, chabazite-Ca and gypsum in cavities in alkaline basalt. Sulfite-rich thaumasite has been found in hydrothermal assemblages in young alkaline basalts in two volcanic regions of Germany: it is widespread at Graulay quarry and occurs at Rother Kopf, Schellkopf and Bellerberg quarries in Eifel district; it has also been found at Zeilberg quarry, Franconia, Bavaria. Hielscherite forms matted fibrous aggregates up to 1 cm across and groups of acicular to prismatic hexagonal crystals up to 0.3 × 0.3 × 1.5 mm. Individual crystals are colourless and transparent with a vitreous lustre and crystal aggregates are white with a silky lustre. The Mohs hardness is 2–2½. Measured and calculated densities are Dmeas = 1.82(3) and Dcalc = 1.79 g cm–3. Hielscherite is optically uniaxial (–), ω = 1.494(2), ε = 1.476(2). The mean chemical composition of holotype material (determined by electron microprobe for Ca, Al, Si, and S and gas chromatography for C, H and N, with the S4+:S6+ ratio from the crystal-structure data) is CaO 27.15, Al2O3 2.33, SiO2 7.04, CO2 2.71, SO2 6.40, SO3 12.91, N2O5 0.42, H2O 39.22, total 98.18 wt.%. The empirical formula on the basis of 3 Ca atoms per formula unit is Ca3(Si0.73Al0.28)Σ1.01(OH)5.71(SO4)1.00(SO3)0.62(CO3)0.38(NO3)0.05·10.63H2O. The presence of sulfite was confirmed by crystal-structure analysis and infrared and X-ray absorption near edge structure spectra. The crystal structure of sulfite-rich thaumasite from Zeilberg quarry was solved by direct methods based on single-crystal X-ray diffraction data (R1 = 0.064). The structure of hielscherite was refined using the Rietveld method (Rwp = 0.0317). Hielscherite is hexagonal, P63, a = 11.1178(2), c = 10.5381(2) Å, V = 1128.06(4) Å3 and Z = 2. The strongest reflections in the X-ray powder pattern [(d, Å (I)(hkl)] are: 9.62(100)(010,100); 5.551(50)(110); 4.616(37)(012,102); 3.823(64)(112); 3.436(25)(211), 2.742(38)(032,302), 2.528(37)(123,213), 2.180(35)(042,402;223). In both hielscherite and sulfite-rich thaumasite, pyramidal sulfite groups occupy the same site as trigonal carbonate groups, with analogous O sites, whereas tetrahedral sulfate groups occupy separate positions. Hielscherite is named in honour of the German mineral collector Klaus Hielscher (b. 1957).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-10
    Description: Experiences with three practical meteorological applications with different characteristics are used to highlight the core computer science aspects and applicability of distributed computing to meteorology. Presenting Cloud and Grid computing this paper shows use case scenarios fitting a wide range of meteorological applications from operational to research studies. The paper concludes that distributed computing complements and extends existing high performance computing concepts and allows for simple, powerful and cost effective access to computing capacity.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-07-01
    Print ISSN: 0169-4332
    Electronic ISSN: 1873-5584
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-01
    Print ISSN: 0169-4332
    Electronic ISSN: 1873-5584
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...