ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-15
    Description: The source mantle of the basaltic ocean crust on the western half of the Pacific Plate was examined using Pb–Nd–Hf isotopes. The results showed that the subducted Izanagi–Pacific Ridge (IPR) formed from both Pacific (180–∼80 Ma) and Indian (∼80–70 Ma) mantles. The western Pacific Plate becomes younger westward and is thought to have formed from the IPR. The ridge was subducted along the Kurile–Japan–Nankai–Ryukyu (KJNR) Trench at 60–55 Ma and leading edge of the Pacific Plate is currently stagnated in the mantle transition zone. Conversely, the entire eastern half of the Pacific Plate, formed from isotopically distinct Pacific mantle along the East Pacific Rise and the Juan de Fuca Ridge, largely remains on the seafloor. The subducted IPR is inaccessible; therefore, questions regarding which mantle might be responsible for the formation of the western half of the Pacific Plate remain controversial. Knowing the source of the IPR basalts provides insight into the Indian–Pacific mantle boundary before the Cenozoic. Isotopic compositions of the basalts from borehole cores (165–130 Ma) in the western Pacific show that the surface oceanic crust is of Pacific mantle origin. However, the accreted ocean floor basalts (∼80–70 Ma) in the accretionary prism along the KJNR Trench have Indian mantle signatures. This indicates the younger western Pacific Plate of IPR origin formed partly from Indian mantle and that the Indian–Pacific mantle boundary has been stationary in the western Pacific at least since the Cretaceous. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-24
    Description: The generation, transport, and accumulation of tropospheric dust have changed with the paleoclimatic changes of the Quaternary Period. Such dust has accumulated in Japan ∼3000 km leeward of the source deserts in China. We analyzed the fractions of windblown fine quartz and bulk major and trace elements, and Sr–Nd–Pb isotopic compositions of loess in SW Japan deposited over the past 210 kyr. The results indicated extensive accumulation of tropospheric dust mixed with tephra fragments derived from the nearby Daisen volcano. The accumulation rate of fine quartz and selected elemental/isotopic compositions can be used as climatic proxies that reflect greater accumulation of dust in times of colder climate. Chemical indices for weathering show enhanced effects of weathering during times of warmer climate. The trace element compositions of the loess deposits are surprisingly similar to those of the Chinese loess, hemipelagic sediments in the Sea of Japan and the western Pacific Ocean, and the distal Chinese dust found in Canada. This similarity indicates that the loess dust shares major fractions of these fine-grained sediments, and that geochemical fractionation during the transport was limited. The Sr–Nd–Pb isotope compositions of the SW Japan loess indicate an origin predominantly in the Gobi Desert. The high-latitude Pacific sediments and high-latitude dust in Canada also show the same signature. However, isotopic compositions of samples from the southern Chinese loess plateau and mid- to low-latitude Pacific sediments are largely derived from the Taklimakan desert, which indicates different delivery pathways of the tropospheric dusts. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-19
    Description: We quantitatively explore element redistribution at subduction zones using numerical mass balance models to evaluate the roles of the subduction zone filter in the Earth's geochemical cycle. Our models of slab residues after arc magma genesis differ from previous ones by being internally consistent with geodynamic models of modern arcs that successfully explain arc magma genesis, and include element fluxes from the dehydration/melting of each underlying slab component. We assume that the mantle potential temperature ( T p ) was 1400–1650°C at 3.5–1.7 Ga and gradually decreased to 1300–1350°C today. Hot subduction zones with T p ∼1650°C have a thermal structure like modern SW Japan where high-Mg andesite is formed that is chemically like continental crust. After 2.5–1.7 Gyr of storage in the mantle, the residual igneous oceanic crust from hot subduction zones can evolve isotopically to the HIMU mantle component, the residual base of the mantle wedge to EMI, the residual sediment becomes an essential part of EMII, and the residual top of the mantle wedge can become the subcontinental lithosphere component. The Common or Focal Zone component is a stable mixture of the first three residues occasionally mixed with early depleted mantle. Slab residue that recycled earlier (∼2.5 Ga) form the DUPAL anomaly in the southern hemisphere, whereas residues of more recent recycling (∼1.7 Ga) underlie the northern hemisphere. These ages correspond to major continental crust forming events. The east-west heterogeneity of the depleted upper mantle involves sub continental mantle except in the Pacific. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-16
    Description: The Yamato Basin in the Japan Sea is a back-arc basin characterized by basaltic oceanic crust that is twice as thick as typical oceanic crust. Two types of ocean floor basalts, formed during the opening of the Japan Sea in the Middle Miocene, were recovered from the Yamato Basin during Ocean Drilling Program Legs 127/128. These can be considered as depleted (D-type) and enriched (E-type) basalts based on their incompatible trace element and Sr–Nd–Pb–Hf isotopic compositions. Both types of basalts plot along a common mixing array drawn between depleted mantle and slab sediment represented by a sand-rich turbidite on the Pacific Plate in the NE Japan forearc. The depleted nature of the D-type basalts suggests that the slab sediment component is nil to minor relative to the dominant mantle component, whereas the enrichment of all incompatible elements in the E-type basalts was likely caused by a large contribution of bulk slab sediment in the source. The results of forward model calculations using adiabatic melting of a hydrous mantle with sediment flux indicate that the melting conditions of the source mantle for the D-type basalts are deeper and hotter than those for the E-type basalts, which appear to have formed under conditions hotter than those of normal mid-oceanic ridge basalts (MORB). These results suggest that the thicker oceanic crust was formed by greater degrees of melting of a hydrous metasomatized mantle source at unusually high mantle potential temperature during the opening of the Japan Sea. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-18
    Description: The Comment by Pineda-Velasco et al . [2015] examined Pb isotope data presented by Kimura et al . [2014]. The authors' points are that (1) there is uncertainty in the analytical results of Kimura et al . [2014] due to the effect of mass fractionation, and therefore, (2) the interpretations of Kimura et al . [2014] based on the extent of crustal assimilation and the estimated Pb isotopic composition of the crustal component are erroneous. In response to the Comment, we report a flaw in the original paper that the samples from the Aono, Daisen, and Kannabe regions were analyzed using conventional TIMS methods and all other samples were analyzed using thallium-spiked multi-collector inductively-coupled-plasma mass spectrometry (TS-MC-ICP-MS). We have re-analyzed the sample powders from Karasugasen, Daisen, and Aono using TS-MC-ICP-MS. Our new results showed considerable overlap with the data in Pineda-Velasco et al . [2015]. Therefore, the isotopic trends shown by the conventional TIMS in Kimura et al . [2014] were analytical artifacts from mass bias. We conclude that the crustal assimilation proposed by Kimura et al . [2014] was erroneous in terms of Pb isotopes, nevertheless some crustal assimilation in the Karasugasen lava is evident from the chemical zoning of hornblende phenocrysts. Although the original Pb isotope argument for crustal contamination was wrong, the ABS4 modeling is unaffected because of no to subtle changes in estimated mantle source compositions in their ABS4 model. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-06
    Description: Dacitic to rhyolitic glass shards from 80 widespread tephras erupted during the past 5 Mys from calderas in Kyushu, and SW, central, and NE Japan were analyzed. Laser ablation inductively coupled plasma mass spectrometry was used to determine 10 major and 33 trace elements and 207 Pb/ 206 Pb– 208 Pb/ 206 Pb isotope ratios. The tephras were classified into three major geochemical types and their source rocks were identified as plutonic, sedimentary, and intermediate amphibolite rocks in the upper crust. A few tephras from SW Japan were identified as adakite and alkali rhyolite and were regarded to have originated from slab melt and mantle melt, respectively. The Pb isotope ratios of the tephras are comparable to those of the intermediate lavas in the source areas but are different from the basalts in these areas. The crustal assimilants for the intermediate lavas were largely from crustal melts and are represented by the rhyolitic tephras. A large heat source is required for forming large volumes of felsic crustal melts and is usually supplied by the mantle via basalt. Hydrous arc basalt formed by cold slab subduction is voluminous, and its heat transfer with high water content may have melted crustal rocks leading to effective felsic magma production. Coincidence of basalt and felsic magma activities shown by this study suggests caldera-forming eruptions are ultimately the effect of a mantle-driven cause. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract A certain type of deep‐sea sediment exhibits very high content of rare‐earth elements and yttrium (REY) and is therefore expected to serve as a novel resource for these industrially essential metals. In this paper, we statistically analyzed the bulk chemical composition of deep‐sea sediments collected from the western North Pacific Ocean. By applying independent component analysis (ICA) to the multi‐elemental dataset, we extracted three independent components (ICs) that can be interpreted as the influence of Mn‐oxides (IC1), REY‐enriched biogenic calcium phosphate (BCP) (IC2), and possibly a diagenetic effect involving Cu‐enrichment (IC3) on bulk sediment geochemistry. Subsequently, we selected representative samples based on the ICA result, and implemented Sr–Nd–Pb isotopic analyses of bulk sediments. The results indicate that the extremely REY‐rich mud characterized by IC2 inherits the geochemical signature of deep Pacific seawater, whereas the non‐REY‐rich mud with less diagenetic alterations, characterized by IC3, implies an influence of terrigenous dust probably from the Taklimakan Desert–Chinese loess plateau. IC1 may reflect the variation in sedimentation rates. Characteristic downhole variations of IC1 and IC3 scores imply the presence of hiatus and/or erosion of the sediment column across the REY content peak. The putative cause is an enhanced bottom current, which can physically separate coarse BCP grains with very high REY content and thus produce an extremely REY‐enriched sediment layer.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-15
    Description: We present a new numerical trace element mass balance model for adiabatic melting of a pyroxenite-bearing peridotite for estimating mantle potential temperature, depth of melting column, and pyroxenite fraction in the source mantle for a primary ocean basalt/picrite. The Ocean Basalt Simulator version 1 (OBS1) uses a thermodynamic model of adiabatic melting of a pyroxenite-bearing peridotite with experimentally/thermodynamically parameterized liquidus–solidus intervals and source mineralogy. OBS1 can be used to calculate a sequence of adiabatic melting with two melting models, including (1) melting of peridotite and pyroxenite sources with simple mixing of their fractional melts (melt–melt mixing model), and (2) pyroxenite melting, melt metasomatism in the host peridotite, and melting of the metasomatized peridotite (source–metasomatism model). OBS1 can be used to explore (1) the fractions of peridotite and pyroxenite, (2) mantle potential temperature, (3) pressure of termination of melting, (4) degree of melting, and (5) residual mode of the sources. In order to constrain these parameters, the model calculates a mass balance for 26 incompatible trace elements in the sources and in the generated basalt/picrite. OBS1 is coded in an Excel spreadsheet and runs with VBA macros. Using OBS1, we examine the source compositions and conditions of the mid-oceanic ridge basalts, Loihi–Koolau basalts in the Hawaiian hotspot, and Jurassic Shatsky Rise and Mikabu oceanic plateau basalts and picrites. The OBS1 model shows the physical conditions, chemical mass balance, and amount of pyroxenite in the source peridotite, which are keys to global mantle recycling. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-22
    Description: North Pond is an isolated sedimentary pond on the western flank of the Kane area along the Mid-Atlantic Ridge. Drill-hole U1382A of IODP Expedition 336 recovered peridotite and gabbro samples from a sedimentary breccia layer in the pond, from which we collected six fresh peridotite samples. The peridotite samples came from the southern slope of the North Pond where an oceanic core complex is currently exposed. The samples were classified as spinel harzburgite, plagioclase-bearing harzburgite, and a vein-bearing peridotite that contains tiny gabbroic veins. No obvious macroscopic shear deformation related to the formation of a detachment fault was observed. The spinel harzburgite with a protogranular texture was classified as refractory peridotite. The degree of partial melting of the spinel harzburgite is estimated to be ∼17%, and melt depletion would have occurred at high temperatures in the uppermost mantle beneath the spreading axis. The progressive melt–rock interactions between the depleted spinel harzburgite and the percolating melts of Normal-Mid Ocean Ridge Basalt (N-MORB) produced the plagioclase-bearing harzburgite and the vein-bearing peridotite at relatively low temperatures. This implies that the subsequent refertilization occurred in an extinct spreading segment of the North Pond after spreading at the axis. Olivine fabrics in the spinel and plagioclase-bearing harzburgites are of types AG, A, and D, suggesting the remnants of a mantle flow regime beneath the spreading axis. The initial olivine fabrics appear to have been preserved despite the later melt–rock interactions. The peridotite samples noted above preserve evidence of mantle flow and melt–rock interactions beneath a spreading ridge that formed at ∼8 Ma. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-10
    Description: We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature ( T p ) of 1650–1500°C during 3.5–1.5 Ga before decreasing gradually to ∼1300°C today. The source mantle composition changed from primitive (PM) to depleted as T p decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high- T p (3.5–1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the sub-continental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5–0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ∼1.5 Ga to less vigorous afterwards is suggested to explain the thermochemical mantle evolution. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...