ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Atmospheric Measurement Techniques. 2018; 11(3): 1793-1815. Published 2018 Mar 29. doi: 10.5194/amt-11-1793-2018.  (1)
  • Journal of Applied Meteorology and Climatology. 2011; 50(2): 379-398. Published 2011 Feb 01. doi: 10.1175/2010jamc2341.1.  (1)
  • Journal of Atmospheric and Oceanic Technology. 2016; 33(7): 1455-1471. Published 2016 Jul 01. doi: 10.1175/jtech-d-15-0122.1.  (1)
  • 61975
  • 130405
  • 122541
Collection
  • Articles  (3)
Years
Journal
Topic
  • 1
    Publication Date: 2016-07-01
    Description: Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF, which, among others, are based on near-surface specific humidity . However, the random retrieval error () remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS, version 3.2), dataset. The methodology makes use of multiple triple collocation (MTC) analysis between 1995 and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive Ocean–Atmosphere Data Set (ICOADS), serving as the in situ ground reference. The MTC approach permits the derivation of as the sum of model uncertainty and sensor noise , while random uncertainties due to in situ measurement errors () and collocation () are isolated concurrently. Results show an average of 1.1 ± 0.3 g kg−1, whereas the mean () is in the order of 0.5 ± 0.1 g kg−1 (0.5 ± 0.3 g kg−1). Regional analyses indicate a maximum of exceeding 1.5 g kg−1 within humidity regimes of 12–17 g kg−1, associated with the single-parameter, multilinear retrieval applied in HOAPS. Multidimensional bias analysis reveals that global maxima are located off the Arabian Peninsula.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-29
    Description: Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m−2 with a global mean of 25 W m−2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average of 37 W m−2. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Regional and seasonal analyses suggest that largest total LHF uncertainties are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean LHF increase up to 2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other satellite retrievals, which increases the significance of the present work.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-01
    Description: Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux E − P in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in E − P of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...