ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-27
    Description: The extent to which atmospheric nitrogen (N) deposition reflects land use differences and biogenic vs. fossil fuel reactive N sources remains unclear, yet represents a critical uncertainty in ecosystem N budgets. We compared N concentrations and isotopes in precipitation-event bulk (wet + dry) deposition across nearby valleys in northern Utah with contrasting land use (highly urban vs. intensive agriculture/low-density urban). We predicted greater nitrate (NO 3 - ) vs. ammonium (NH 4 + ) and higher δ 15 N of NO 3 - and NH 4 + in urban valley sites. Contrary to expectations, annual N deposition (3.5–5.1 kg N ha -1 y -1 ) and inorganic N concentrations were similar within and between valleys. Significant summertime decreases in δ 15 N of NO 3 - possibly reflected increasing biogenic emissions in the agricultural valley. Organic N was a relatively minor component of deposition (~13%). Nearby paired wildland sites had similar bulk deposition N concentrations as the urban and agricultural sites. Weighted bulk deposition δ 15 N was similar to natural ecosystems (-0.6 ± 0.7‰). Fine atmospheric particulate matter (PM 2.5 ) had consistently high values of bulk δ 15 N (15.6 ± 1.4‰), δ 15 N in NH 4 + (22.5 ± 1.6‰), and NO 3 - (8.8 ± 0.7‰), consistent with equilibrium fractionation with gaseous species. δ 15 N in bulk deposition NH 4 + varied by more than 40‰, and spatial variation in δ 15 N within storms exceeded 10‰. Sporadically high values of δ 15 N were thus consistent with increased particulate N contributions as well as potential N source variation. Despite large differences in reactive N sources, urban and agricultural landscapes are not always strongly reflected in the composition and fluxes of local N deposition—an important consideration for regional-scale ecosystem models.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-18
    Description: Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4–12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-29
    Description: A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to earth system models is relatively rare. Here, we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy simulated LAI, energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long wave radiation bias. CLM4-Crop underestimated soil water content during mid-growing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics are needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-19
    Description: Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States and Canada. None of the models in this study match estimated GPP within observed uncertainty. On average, models overestimate GPP in winter, spring, and fall, and underestimate GPP in summer. Models overpredicted GPP under dry conditions and for temperatures below 0°C. Improvements in simulated soil moisture and ecosystem response to drought or humidity stress will improve simulated GPP under dry conditions. Adding a low-temperature response to shut down GPP for temperatures below 0°C will reduce the positive bias in winter, spring, and fall and improve simulated phenology. The negative bias in summer and poor overall performance resulted from mismatches between simulated and observed light use efficiency (LUE). Improving simulated GPP requires better leaf-to-canopy scaling and better values of model parameters that control the maximum potential GPP, such as εmax (LUE), Vcmax (unstressed Rubisco catalytic capacity) or Jmax (the maximum electron transport rate).
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-29
    Description: Lakes within fluvial networks may affect dissolved organic matter (DOM) dynamics in streams by dampening spring DOM snowmelt flushing responses and/or by increasing summer DOM production. We assessed the temporal variability of dissolved organic carbon (DOC) concentration and DOM characteristics (specific ultraviolet absorbance (SUVA254); DOC:dissolved organic nitrogen (DOC:DON)), as well as DOC export in seven paired lake inflows and outflows in the Sawtooth Mountain lake district, Idaho. We hypothesized that lakes would decrease stream DOM temporal variability and increase DOM export as a result of autotrophic production. We correlated DOM variability with landscape factors to evaluate potential drivers of DOM temporal patterns (measured as coefficient of variation). Coefficients of variation were 40–90% higher in lake inflows than outflows for DOC concentrations, characteristics, and DOC:DON. Increases in DOC concentrations on the ascending limb of the snowmelt hydrograph were greater in lake inflows than outflows, and on average mean DOC flux occurred 5.4 days earlier in the inflows than for the outflows. During base flow, mean outflow DOC concentrations were 1.7 times greater than inflows, and six outflows had higher annual export than inflows. Combined, these results illustrate that lakes alter the magnitude, timing and temporal variation of DOM concentration and characteristics exported from subalpine watersheds. This buffering effect results from a seasonal shift in the balance between hydrological versus biological controls on DOC dynamics, where lakes act as a sink during the spring when hydrologic controls dominate watershed DOM transport and act as a DOM source during summer.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-23
    Description: The oxygen isotope of water (18O-H2O) and carbon dioxide (18O-CO2) is an important signal of global change and can provide constraints on the coupled carbon-water cycle. Here, simultaneous observations of 18O-H2O (liquid and vapor phases) and 18O-CO2 were used to investigate the relation between canopy leaf water 18O enrichment, 18O-CO2 photosynthetic discrimination (18Δ), isotope disequilibrium (Deq), and the biophysical factors that control their temporal variability in a C4 (Zea mays L.) ecosystem. Data and analyses are presented from a 74 day experiment conducted in Minnesota during summer 2009. Eddy covariance observations indicate that the oxygen isotope composition of C4 evapotranspiration (δE) ranged from about −20‰ (VSMOW scale) in the early morning to −5‰ after midday. These values were used to estimate the isotope composition at the sites of leaf water evaporation (δL,e) assuming non-steady-state conditions and revealed a strong diurnal pattern ranging from about −5‰ in the early morning to +10‰ after midday. With the addition of net ecosystem CO2 exchange measurements and carbonic anhydrase (CA) assays, we derived canopy-scale 18Δ. These estimates typically varied from 11.3 to 27.5‰ (VPDB scale) and were shown to vary significantly depending on the steady state or non-steady-state assumptions related to leaf water enrichment. We demonstrate that the impact of turbulence on kinetic fractionation and steady state assumptions result in larger estimates of 18Δ and Deq. Further, the results indicate that both leaf-scale and canopy-scale CO2 hydration efficiency may be substantially lower than that previously reported for laboratory conditions. These results may have important implications for interpreting variations in atmospheric 18O-CO2 and constraining regional carbon budgets based on the oxygen isotope tracer approach.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-10
    Description: Biogeochemical reactions associated with stream nitrogen cycling, such as nitrification and denitrification, can be strongly controlled by water and solute residence times in the hyporheic zone (HZ). We used a whole-stream steady state 15N-labeled nitrate (15NO3−) and conservative tracer (Cl−) addition to investigate the spatial and temporal physiochemical conditions controlling the denitrification dynamics in the HZ of an upland agricultural stream. We measured solute concentrations (15NO3−, 15N2 (g), as well as NO3−, NH3, DOC, DO, Cl−), and hydraulic transport parameters (head, flow rates, flow paths, and residence time distributions) of the reach and along HZ flow paths of an instrumented gravel bar. HZ exchange was observed across the entire gravel bar (i.e., in all wells) with flow path lengths up to 4.2 m and corresponding median residence times greater than 28.5 h. The HZ transitioned from a net nitrification environment at its head (short residence times) to a net denitrification environment at its tail (long residence times). NO3− increased at short residence times from 0.32 to 0.54 mg-N L−1 until a threshold of 6.9 h and then consistently decreased from 0.54 to 0.03 mg-N L−1. Along these same flow paths, declines were seen in DO (from 8.31 to 0.59 mg-O2 L−1) and DOC (from 3.0 to 1.7 mg-C L−1). The rates of the DO and DOC removal and net nitrification were greatest during short residence times, while the rate of denitrification was greatest at long residence times. 15NO3− tracing confirmed that a fraction of the NO3− removal was via denitrification as 15N2 was produced across the entire gravel bar HZ. Production of 15N2 across all observed flow paths and residence times indicated that denitrification microsites are present even where nitrification was the net outcome. These findings demonstrate that the HZ is an active nitrogen sink in this system and that the distinction between net nitrification and denitrification in the HZ is a function of residence time and exhibits threshold behavior. Consequently, incorporation of HZ exchange and water residence time characterizations will improve mechanistic predictions of nitrogen cycling in streams.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-05-02
    Description: Rivers receive and process large quantities of terrestrial dissolved organic carbon (DOC). Biologically available (unstable) DOC leached from primary producers may stimulate (i.e., prime) the consumption of more stable terrestrially-derived DOC by heterotrophic microbes. We measured microbial DOC consumption (i.e., decay rates) from contrasting C sources in ten rivers in the Western and Midwestern United States using short-term bioassays of river water, soil and algal leachates, glucose, and commercial humate. We added inorganic nutrients (ammonium and phosphorus) to a subset of bioassays. We also amended a subset of river, soil, and commercial humate bioassays with glucose or algal leachates to test the hypothesis that unstable DOC primes consumption of more stable DOC. We used prior measurements of source-specific DOC bioavailability, linked with a Bayesian process model, to estimate means and posterior probability distributions for source-specific DOC decay rates in multi-source bioassays. Modeled priming effects ranged from a −130 to +370% change in more stable DOC decay when incubated with unstable DOC. Glucose increased modeled river DOC decay by an average of 87% among all rivers. Glucose and algal leachates increased soil leachate and commercial humate decay by an average of 25% above background rates. Inorganic nutrient additions did not have consistent effects on DOC decay, likely because most of the study rivers had high ambient background nutrients. Our results demonstrate that the priming effect can augment DOC decay in rivers. In addition, Bayesian models can be used to estimate mechanisms driving aquatic ecosystem processes that are difficult to measure directly.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-12-31
    Description: We used an in situ steady state 15N-labeled nitrate (15NO3−) and acetate (AcO−) well-to-wells injection experiment to determine how the availability of labile dissolved organic carbon (DOC) as AcO− influences microbial denitrification in the hyporheic zone of an upland (third-order) agricultural stream. The experimental wells receiving conservative (Cl− and Br) and reactive (15NO3−) solute tracers had hyporheic median residence times of 7.0 to 13.1 h, nominal flowpath lengths of 0.7 to 3.7 m, and hypoxic conditions (
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-12-20
    Description: Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of 21 ecosystem models at 9 eddy covariance towers as part of the North American Carbon Program's site-level intercomparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model error are consistent across a diverse range of models and sites. To assess the significance of model error at different time scales, a novel Monte Carlo approach was developed to incorporate flux observation error. Failing to account for observation error leads to a misidentification of the time scales that dominate model error. These analyses show that model error (1) is largest at the annual and 20–120 day scales, (2) has a clear peak at the diurnal scale, and (3) shows large variability among models in the 2–20 day scales. Errors at the annual scale were consistent across time, diurnal errors were predominantly during the growing season, and intermediate-scale errors were largely event driven. Breaking spectra into discrete temporal bands revealed a significant model-by-band effect but also a nonsignificant model-by-site effect, which together suggest that individual models show consistency in their error patterns. Differences among models were related to model time step, soil hydrology, and the representation of photosynthesis and phenology but not the soil carbon or nitrogen cycles. These factors had the greatest impact on diurnal errors, were less important at annual scales, and had the least impact at intermediate time scales.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...