ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Journal of Physical Oceanography. 2002; 32(9): 2681-2705. Published 2002 Sep 01. doi: 10.1175/1520-0485-32.9.2681.  (1)
  • Journal of Physical Oceanography. 2012; 42(9): 1402-1420. Published 2012 Feb 10. doi: 10.1175/jpo-d-11-0168.1.  (1)
  • 5914
  • 1
    Publication Date: 2002-09-01
    Description: Generalized linear stability theory is applied to the wind-driven ocean circulation in the form of a double gyre described by the barotropic quasigeostrophic vorticity equation. The development of perturbations on this circulation is considered. The circulation fields are inhomogeneous, and regions of straining flow render non-normal the tangent linear operators that describe the time evolution of perturbation energy and enstrophy. When the double-gyre circulation is asymptotically stable, growth of perturbation energy and enstrophy is still possible due to linear interference of its nonorthogonal eigenmodes. The sources and sinks of perturbation energy and enstrophy associated with the interference process are traditionally associated with the interaction of perturbation stresses with the mean flow. These ideas are used to understand the response of an asymptotically stable double-gyre circulation to stochastic wind stress forcing. Calculation of the optimal forcing patterns (stochastic optimals) reveals that much of the stochastically induced variability can be explained by one pattern. Variability induced by this pattern is maintained by long and short Rossby waves that interact with the western boundary currents, and perturbation growth occurs through barotropic processes. The perturbations that maintain the stochastically induced variance in this way have a large projection on some of the most non-normal, least-damped eigenmodes of the double-gyre circulation. Perturbation growth in nonautonomous and asymptotically unstable systems is also considered in the same framework. The Lyapunov vectors of unstable flows are found to have a large projection on some of the most non-normal, least-damped eigenmodes of the time mean circulation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-10
    Description: One of the many applications of data assimilation is the estimation of adequate initial conditions for model forecasts. In this work, the authors evaluate to what extent the incremental, strong-constraint, four-dimensional variational data assimilation (IS4DVAR) can improve prediction of mesoscale variability in the East Australian Current (EAC) using the Regional Ocean Modeling System (ROMS). The observations considered in the assimilation experiments are daily composites of satellite sea surface temperature (SST), 7-day average reanalysis of satellite altimeter sea level anomalies, and subsurface temperature profiles from high-resolution expendable bathythermograph (XBT). Considering all available observations for years 2001 and 2002, ROMS forecast initial conditions are generated every week by assimilating the available observations from the 7 days prior to the forecast initial time. It is shown that assimilation of surface information only [SST and sea surface height (SSH)] results in poor estimates of the true subsurface ocean state (as depicted by the XBTs) and therefore poor forecast skill of subsurface conditions. Including the XBTs in the assimilation experiments improves the ocean state estimation in the vicinity of the XBT transects. By introducing subsurface pseudo-observations (which are called synthetic CTD) based on an empirical relationship between satellite surface observations and subsurface variability, the authors find a significant improvement in ocean state estimates that leads to skillful forecasts for up to 2 weeks in the domain considered.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...