ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Journal of Physical Oceanography. 2011; 41(8): 1455-1464. Published 2011 Aug 01. doi: 10.1175/2011jpo4507.1.  (1)
  • Journal of Physical Oceanography. 2016; 46(3): 947-963. Published 2016 Mar 01. doi: 10.1175/jpo-d-15-0188.1.  (1)
  • 5914
Collection
  • Articles  (2)
Years
Journal
Topic
  • 1
    Publication Date: 2016-03-01
    Description: Utilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30°, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity ζ and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5%–25% for the 3D ζ field and 15%–35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-01
    Description: The small-scale variability of the tropical Pacific is studied with the simulations from a numerical model in terms of vorticity structures. A Lagrangian method based on the Okubo–Weiss parameter is used to identify the structures and track their main characteristics. Between 8°S and 8°N, the structure characteristics are spatially inhomogeneous compared to higher latitudes. They can be grouped into three categories: anticyclonic and cyclonic structures off the equator and the equatorial structures between 2°S and 2°N. They all have a strong annual cycle with maximum presence from September to March, except during strong El Niño years, when the number of structures becomes very low. Off the equator from 2° to 8°, the anticyclonic structures dominate, but with drastically different characteristics north and south of the equator. In the north, large nonlinear vortices develop (known as the tropical instability vortices) in phase with the 30–35-day oscillation related to an unstable first-meridional-mode Rossby waves. In the south, mostly fragmentary linear structures are present, with lower propagation speeds. The equatorial structures are mostly counterclockwise. The larger ones tend to be linear and are clearly associated with Yanai waves. The large majority of the cyclonic structures off the equator are also quite linear and smaller and less numerous than the anticyclonic structures. However, some of them are nonlinear with vorticity values higher than 2 times the Coriolis parameter.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...