ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Journal of Physical Oceanography. 2008; 38(9): 2111-2117. Published 2008 Sep 01. doi: 10.1175/2007jpo3932.1.  (1)
  • Journal of Physical Oceanography. 2010; 40(8): 1851-1865. Published 2010 Aug 01. doi: 10.1175/2010jpo4217.1.  (1)
  • Journal of Physical Oceanography. 2015; 45(5): 1376-1392. Published 2015 May 01. doi: 10.1175/jpo-d-14-0097.1.  (1)
  • Journal of Physical Oceanography. 2018; 48(4): 937-957. Published 2018 Apr 01. doi: 10.1175/jpo-d-17-0039.1.  (1)
  • 5914
Collection
  • Articles  (4)
Years
Journal
Topic
  • 1
    Publication Date: 2018-04-01
    Description: The stability of lens-shaped vortices is revisited in the context of an idealized quasigeostrophic model. We compute the stability characteristics with higher accuracy and for a wider range of Burger numbers (Bu) than what was previously done. It is found that there are four distinct Bu regions of linear instability. Over the primary region of interest (0.1 〈 Bu 〈 10), we confirm that the first and second azimuthal modes are the only linearly unstable modes, and they are associated with vortex tilting and tearing, respectively. Moreover, the most unstable first azimuthal mode is not precisely captured by the linear stability analysis because of the extra condition that is imposed at the vortex center, and accurate calculations of the second azimuthal mode require higher resolution than was previously considered. We also study the nonlinear evolution of lens-shaped vortices in the context of this model and present the following results. First, vortices with a horizontal length scale a little less than the radius of deformation (Bu 〉 1) are barotropically unstable and develop a wobble, whereas those with a larger horizontal length scale (Bu 〈 1) are baroclinically unstable and often split. Second, the transfer of energy between different horizontal scales is quantified in two typical cases of barotropic and baroclinic instability. Third, after the instability the effective Bu is closer to unity.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-01
    Description: Recently, Paldor et al. provided a consistent and unified theory for Kelvin, Poincaré (inertial–gravity), and Rossby waves in the rotating shallow-water equations (SWE). Unfortunately, the article has some errors, and the effort is made to correct them in this note. Also, the eigenvalue problem is rewritten in a dimensional form and then nondimensionalized in terms of more traditional nondimensional parameters and compared to the dispersion relations of the old and new theories. The errors in Paldor et al. are only quantitative in nature and do not alter their major results: Rossby waves can have larger phase speeds than what is predicted from the classical theory, and Rossby and Poincaré waves can be trapped near the equatorward boundary.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-01
    Description: Motivated by the fact that time-dependent currents are ubiquitous in the ocean, this work studies the two-layer Phillips model on the beta plane with baroclinic shear flows that are steady, periodic, or aperiodic in time to understand their nonlinear evolution better. When a linearly unstable basic state is slightly perturbed, the primary wave grows exponentially until nonlinear advection adjusts the growth. Even though for long time scales these nearly two-dimensional motions predominantly cascade energy to large scales, for relatively short times the wave–mean flow and wave–wave interactions cascade energy to smaller horizontal length scales. The authors demonstrate that the manner through which these mechanisms excite the harmonics depends significantly on the characteristics of the basic state. Time-dependent basic states can excite harmonics very rapidly in comparison to steady basic states. Moreover, in all the simulations of aperiodic baroclinic shear flows, the barotropic component of the primary wave continues to grow after the adjustment by the nonlinearities. Furthermore, the authors find that the correction to the zonal mean flow can be much larger when the basic state is aperiodic compared to the periodic or steady limits. Finally, even though time-dependent baroclinic shear on an f plane is linearly stable, the authors show that perturbations can grow algebraically in the linear regime because of the erratic variations in the aperiodic flow. Subsequently, baroclinicity adjusts the growing wave and creates a final state that is more energetic than the nonlinear adjustment of any of the unstable steady baroclinic shears that are considered.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-01
    Description: The surface quasigeostrophic (SQG) model describes flows with surface buoyancy perturbations with no interior quasigeostrophic potential vorticity at small Rossby number Ro and O(1) Burger number, where quasigeostrophic dynamics are expected to hold. Numerical simulations of SQG dynamics have shown that vortices are frequently generated at small scales, which may have O(1) Rossby numbers and therefore may be beyond the limits of SQG. This paper examines the dynamics of an initially geostrophically balanced elliptical surface buoyancy perturbation in both the SQG model and the nonhydrostatic Boussinesq primitive equations (PE). In the case of very small Rossby number, it is confirmed that both models agree, as expected. For larger Ro, non-SQG effects emerge and as a result the solution of the PE deviates significantly from that of SQG. In particular, an increase in the Rossby number has the following effects: (i) the buoyancy filaments at the surface are stabilized in that they generate fewer secondary vortices; (ii) the core of the vortex experiences inertial instability, which results in a uniform buoyancy profile in its interior; (iii) the divergent part of the energy spectrum increases in magnitude; (iv) the PE model has significantly more gravity waves that are radiated from the vortex; (v) the magnitude of the vertical velocity increases; and (vi) in the mature stages of evolution, there are gravitational instabilities that develop because of the complicated dynamics inside the vortex. It is demonstrated that significant non-SQG effects are evident when the large-scale Rossby number of the initial flow is about 0.05 and the local Rossby number is O(1).
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...