ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Monthly Weather Review. 2005; 133(2): 345-361. Published 2005 Feb 01. doi: 10.1175/mwr-2845.1.  (1)
  • Monthly Weather Review. 2011; 139(3): 809-829. Published 2011 Mar 01. doi: 10.1175/2010mwr3372.1.  (1)
  • Monthly Weather Review. 2014; 142(11): 4284-4307. Published 2014 Oct 24. doi: 10.1175/mwr-d-13-00332.1.  (1)
  • 5911
Collection
  • Articles  (3)
Years
Journal
Topic
  • 1
    Publication Date: 2005-02-01
    Description: Numerical simulations of boundary layer evolution in offshore flow of warm air over cool water are conducted and compared with aircraft observations of mean and turbulent fields made at Duck, North Carolina. Two models are used: a two-dimensional, high-resolution mesoscale model with a turbulent kinetic energy closure scheme, and a three-dimensional large-eddy simulation (LES) model that explicitly resolves the largest turbulent scales. Both models simulate general aspects of the decoupling of the weakly convective boundary layer from the surface, as it is advected offshore, and the formation of an internal boundary layer over the cool water. Two sets of experiments are performed, which indicate that complexities in upstream surface conditions play an important role in controlling the observed structure. The first (land–sea) experiments examine the transition from a rough surface having the same temperature as the ambient lower atmosphere, to a smooth ocean surface that is 5°C cooler. In the second (barrier island) experiment, a 4-km strip along the coastline having surface temperature 5°C warmer than the ambient atmosphere is introduced, to represent a narrow, heated barrier island present at the Duck site. In the land–sea case, it is found that the mesoscale model overpredicts turbulent intensity in the upper half of the boundary layer, forcing a deeper boundary layer. Both the mesoscale and LES models produce only a small change in the boundary layer shear and tend to decrease the momentum flux near the surface much more rapidly than the observations. Results from the barrier-island case are more in line with the observed momentum and turbulence structure, but still have a reduced momentum flux in the lower boundary layer in comparison with the observations. The authors find that turbulence in the LES model generated by convection over the heated land surface is stronger than in the mesoscale model, and tends to persist offshore for greater distances because of greater shear in the upper boundary layer winds. Analysis of the mesoscale model results suggests that better estimation of the mixing length could improve the turbulence closure in regions where the surface fluxes are changing rapidly.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-24
    Description: The wind speed response to mesoscale SST variability is investigated over the Agulhas Return Current region of the Southern Ocean using the Weather Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model. The SST-induced wind response is assessed from eight simulations with different subgrid-scale vertical mixing parameterizations, validated using Quick Scatterometer (QuikSCAT) winds and satellite-based sea surface temperature (SST) observations on 0.25° grids. The satellite data produce a coupling coefficient of sU = 0.42 m s−1 °C−1 for wind to mesoscale SST perturbations. The eight model configurations produce coupling coefficients varying from 0.31 to 0.56 m s−1 °C−1. Most closely matching QuikSCAT are a WRF simulation with the Grenier–Bretherton–McCaa (GBM) boundary layer mixing scheme (sU = 0.40 m s−1 °C−1), and a COAMPS simulation with a form of Mellor–Yamada parameterization (sU = 0.38 m s−1 °C−1). Model rankings based on coupling coefficients for wind stress, or for curl and divergence of vector winds and wind stress, are similar to that based on sU. In all simulations, the atmospheric potential temperature response to local SST variations decreases gradually with height throughout the boundary layer (0–1.5 km). In contrast, the wind speed response to local SST perturbations decreases rapidly with height to near zero at 150–300 m. The simulated wind speed coupling coefficient is found to correlate well with the height-averaged turbulent eddy viscosity coefficient. The details of the vertical structure of the eddy viscosity depend on both the absolute magnitude of local SST perturbations, and the orientation of the surface wind to the SST gradient.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-01
    Description: The study analyzes atmospheric circulation around an idealized coastal cape during summertime upwelling-favorable wind conditions simulated by a mesoscale coupled ocean–atmosphere model. The domain resembles an eastern ocean boundary with a single cape protruding into the ocean in the center of a coastline. The model predicts the formation of an orographic wind intensification area on the lee side of the cape, extending a few hundred kilometers downstream and seaward. Imposed initial conditions do not contain a low-level temperature inversion, which nevertheless forms on the lee side of the cape during the simulation, and which is accompanied by high Froude numbers diagnosed in that area, suggesting the presence of the supercritical flow. Formation of such an inversion is likely caused by average easterly winds resulting on the lee side that bring warm air masses originating over land, as well as by air warming during adiabatic descent on the lee side of the topographic obstacle. Mountain leeside dynamics modulated by differential diurnal heating is thus suggested to dominate the wind regime in the studied case. The location of this wind feature and its strong diurnal variations correlate well with the development and evolution of the localized lee side trough over the coastal ocean. The vertical extent of the leeside trough is limited by the subsidence inversion aloft. Diurnal modulations of the ocean sea surface temperatures (SSTs) and surface depth-averaged ocean current on the lee side of the cape are found to strongly correlate with wind stress variations over the same area. Wind-driven coastal upwelling develops during the simulation and extends offshore about 50 km upwind of the cape. It widens twice as much on the lee side of the cape, where the coldest nearshore SSTs are found. The average wind stress–SST coupling in the 100-km coastal zone is strong for the region upwind of the cape, but is notably weaker for the downwind region, estimated from the 10-day-average fields. The study findings demonstrate that orographic and diurnal modulations of the near-surface atmospheric flow on the lee side of the cape notably affect the air–sea coupling on various temporal scales: weaker wind stress–SST coupling results for the long-term averages, while strong correlations are found on the diurnal scale.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...