ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Geophysical Journal International  (2)
  • 5831
Collection
  • Articles  (2)
Years
Journal
Topic
  • 1
    Publication Date: 2016-12-22
    Description: We performed complex conductivity measurements on 28 core samples from the hole drilled for the Humu'ula Groundwater Research Project (Hawai'i Island, HI, USA). The complex conductivity measurements were performed at 4 different pore water conductivities (0.07, 0.5, 1.0 or 2.0, and 10 S m –1 prepared with NaCl) over the frequency range 1 mHz to 45 kHz at 22 ± 1 °C. The in-phase conductivity data are plotted against the pore water conductivity to determine, sample by sample, the intrinsic formation factor and the surface conductivity. The intrinsic formation factor is related to porosity by Archie's law with an average value of the cementation exponent m of 2.45, indicating that only a small fraction of the connected pore space controls the transport properties. Both the surface and quadrature conductivities are found to be linearly related to the cation exchange capacity of the material, which was measured with the cobalt hexamine chloride method. Surface and quadrature conductivities are found to be proportional to each other like for sedimentary siliclastic rocks. A Stern layer polarization model is used to explain these experimental results. Despite the fact that the samples contain some magnetite (up to 5 per cent wt.), we were not able to identify the effect of this mineral on the complex conductivity spectra. These results are very encouraging in showing that galvanometric induced polarization measurements can be used in volcanic areas to separate the bulk from the surface conductivity and therefore to define some alteration attributes. Such a goal cannot be achieved with resistivity alone.
    Keywords: Mineral Physics, Rheology, Heat Flow and Volcanology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-22
    Description: We investigate the relationship between complex conductivity spectra and both permeability and pore mean size and distribution of 22 core samples (21 volcanic rocks and 1 clayey sandstone). The volcanic core samples were extracted from a wellbore drilled for the Humu‘ula Groundwater Research Project in the Humu‘ula saddle region between Mauna Kea and Mauna Loa volcanoes (Hawaii). The quadrature conductivity spectra of volcanic rocks exhibit a subtle, but generally detectable, relaxation frequency in the range 0.3 Hz to 45 kHz similar to the relaxation frequency observed for clayey sandstones. We find a fair relationship between this relaxation frequency and the pore size determined by mercury porosimetry. Combined with the intrinsic formation factor of the core samples, the relaxation frequency can be used as an indicator of the permeability of the material. The predicted values of the permeability are grossly consistent with the permeability values to air (in the range 0.001–100 mD) within two orders of magnitude. The measured permeability values are highly correlated to the peak of the pore size distribution determined from mercury porosimetry divided by the intrinsic formation factor. By fitting the complex conductivity spectra with the pore size distribution, we obtain the normalized chargeability of the core samples, which is, in turn, highly correlated to the measured cation exchange capacity.
    Keywords: Mineral Physics, Rheology, Heat Flow and Volcanology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...