ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 2015-2019  (2)
  • 1975-1979
  • Human Molecular Genetics  (2)
  • 512
Collection
  • Articles  (2)
Years
  • 2015-2019  (2)
  • 1975-1979
Year
Journal
Topic
  • 1
    Publication Date: 2015-02-26
    Description: The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the chromosome 9 open-reading frame 72 ( C9orf72 ) gene is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (c9FTD/ALS). Recently, it was reported that an unconventional mechanism of repeat-associated non-ATG (RAN) translation arises from C9orf72 expansion. Sense and anti-sense transcripts of the expanded C9orf72 repeat, i.e. the dipeptide repeat protein (DRP) of glycine–alanine (poly-GA), glycine–proline (poly-GP), glycine–arginine (poly-GR), proline–arginine (poly-PR) and proline–alanine (poly-PA), are deposited in the brains of patients with c9FTD/ALS. However, the pathological significance of RAN-translated peptides remains unknown. We generated synthetic cDNAs encoding 100 repeats of DRP without a GGGGCC repeat and evaluated the effects of these proteins on cultured cells and cortical neurons in vivo. Our results revealed that the poly-GA protein formed highly aggregated ubiquitin/p62-positive inclusion bodies in neuronal cells. In contrast, the highly basic proteins poly-GR and PR also formed unique ubiquitin/p62-negative cytoplasmic inclusions, which co-localized with the components of RNA granules. The evaluation of cytotoxicity revealed that overexpressed poly-GA, poly-GP and poly-GR increased the substrates of the ubiquitin–proteasome system (UPS), including TDP-43, and enhanced the sensitivity to a proteasome inhibitor, indicating that these DRPs are cytotoxic, possibly via UPS dysfunction. The present data indicate that a gain-of-function mechanism of toxic DRPs possibly contributes to pathogenesis in c9FTD/ALS and that DRPs may serve as novel therapeutic targets in c9FTD/ALS.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-06
    Description: Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recent multicenter genetic studies have revealed that mutations in the glucocerebrosidase 1 ( GBA1 ) gene, which are responsible for Gaucher's disease, are strong risk factors for PD and DLB. However, the mechanistic link between the functional loss of glucocerebrosidase (GCase) and the toxicity of αSyn in vivo is not fully understood. In this study, we employed Drosophila models to examine the effect of GCase deficiency on the neurotoxicity of αSyn and its molecular mechanism. Behavioral and histological analyses showed that knockdown of the Drosophila homolog of GBA1 ( dGBA1 ) exacerbates the locomotor dysfunction, loss of dopaminergic neurons and retinal degeneration of αSyn-expressing flies. This phenotypic aggravation was associated with the accumulation of proteinase K (PK)-resistant αSyn, rather than with changes in the total amount of αSyn, raising the possibility that glucosylceramide (GlcCer), a substrate of GCase, accelerates the misfolding of αSyn. Indeed, in vitro experiments revealed that GlcCer directly promotes the conversion of recombinant αSyn into the PK-resistant form, representing a toxic conformational change. Similar to dGBA1 knockdown, knockdown of the Drosophila homolog of β - galactosidase ( β-Gal ) also aggravated locomotor dysfunction of the αSyn flies, and its substrate GM1 ganglioside accelerated the formation of PK-resistant αSyn. Our findings suggest that the functional loss of GCase or β-Gal promotes the toxic conversion of αSyn via aberrant interactions between αSyn and their substrate glycolipids, leading to the aggravation of αSyn-mediated neurodegeneration.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...