ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Water Resources Research  (2)
  • 4908
Collection
  • Articles  (2)
Publisher
Years
Journal
  • 1
    Publication Date: 2011-07-23
    Description: We present exact analytical solutions for a one-dimensional diffusion problem coupled with the precipitation-dissolution reaction ${A_{{\rm{(aq)}}}} + {B_{{\rm{(aq)}}}}\rightleftharpoons{M_{(s)}}$ and feedback of porosity change. The solutions are obtained in the form of traveling waves and describe spatial and temporal evolutions of solute concentration, porosity, and mineral distribution for a set of initial and boundary conditions. The form of the solutions limits the choice of admissible boundary conditions, which might be difficult to adapt in natural systems, and thus, the solutions are of limited use for such a system. The main application of the derived solutions is therefore the benchmarking of numerical reactive transport codes for systems with strong porosity change. To test the performance of numerical codes, numerical solutions obtained by using a global implicit finite volume technique are compared to the analytical solutions. Good agreement is obtained between the analytical solutions and the numerical solutions when a sufficient spatial discretization resolves the spatial concentration gradients at any time. In the limit of fast kinetics (local equilibrium), steep concentration fronts cannot be resolved in a numerical discretization schema.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-28
    Description: One of the challenging problems in mathematical geosciences is the determination of analytical solutions of nonlinear partial differential equations describing transport processes in porous media. We are interested in diffusive transport coupled with precipitation-dissolution reactions. Several numerical computer codes that simulate such systems have been developed. Analytical solutions, if they exist, represent an important tool for verification of numerical solutions. We present a methodology for deriving such analytical solutions that are exact and explicit in space and time variables. They describe transport of several aqueous species coupled to precipitation and dissolution of a single mineral in one, two, and three dimensions. As an application, we consider explicit analytical solutions for systems containing one or two solute species that describe the evolution of solutes and solid concentrations as well as porosity. We use one of the proposed analytical solutions to test numerical solutions obtained from two conceptually different reactive transport codes. Both numerical implementations could be verified with the help of the analytical solutions and show good agreement in terms of spatial and temporal evolution of concentrations and porosities.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...