ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-14
    Description: We review the human actions, proximal stressors and ecological responses for floodplain forests Australia's largest river system—the Murray-Darling Basin. A conceptual model for the floodplain forests was built from extensive published information and some unpublished results for the system, which should provide a basis for understanding, studying and managing the ecology of floodplains that face similar environmental stresses. Since European settlement, lowlands areas of the basin have been extensively cleared for agriculture and remnant forests heavily harvested for timber. The most significant human intervention is modification of river flows, and the reduction in frequency, duration and timing of flooding, which are compounded by climate change (higher temperatures and reduced rainfall) and deteriorating groundwater conditions (depth and salinity). This has created unfavorable conditions for all life-history stages of the dominant floodplain tree (Eucalyptus camaldulensis Dehnh.). Lack of extensive flooding has led to widespread dieback across the Murray River floodplain (currently 79% by area). Management for timber resources has altered the structure of these forests from one dominated by large, widely spreading trees to mixed-aged stands of smaller pole trees. Reductions in numbers of birds and other vertebrates followed the decline in habitat quality (hollow-bearing trees, fallen timber). Restoration of these forests is dependent on substantial increases in the frequency and extent of flooding, improvements in groundwater conditions, re-establishing a diversity of forest structures, removal of grazing and consideration of these interacting stressors.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-16
    Description: Projected decreases and changes in the seasonal distribution of precipitation will have profound impacts on southeastern Australia, including its ability to generate renewable hydroelectricity. Recent decreases in precipitation over the region may be significant in the context of instrumental records, but the question of whether these decreases are within long-term natural variability remains. To help address this issue, we present December-January streamflow and dam inflow reconstructions for southeastern Australia. These reconstructions for the Tasmanian west coast are based solely on local tree-ring chronologies and span up to 1600 years. Non-parametric estimates, however, indicate good model skill for the last 458 years (streamflow) and 478 years (dam inflow). The reconstructions indicate that 20 th century conditions were well within the range of historical variability, and were in fact relatively wet. The period from ca. 1600 – 1750 CE was one of enhanced variability and a high proportion of low and high flow events occurred in the 17 th century. There are significant relationships between streamflow and inflow reconstructions and large-scale ocean-atmosphere processes such as ENSO and the Southern Annular Mode. Critically, our two reconstructions rely heavily on new tree-ring chronologies based on properties such as tracheid radial diameter, cell wall thickness and density, underscoring the importance of these different types of chronologies in reconstructions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-04
    Description: Agriculture must increase production for a growing population while simultaneously reducing its environmental impacts. These goals need not be in tension with one another. Here we outline a vision for improving both the productivity and environmental performance of agriculture in the U.S. Midwest, also known as the Corn Belt. Mean annual precipitation has increased throughout the region over the past 50 years, consistent with climate models that attribute the increase to a warming troposphere. Stream gauge data indicate that higher precipitation has been matched or exceeded by higher stream flows, contributing to flooding, soil loss, and excessive nutrient flux to the Gulf of Mexico. We propose increasing landscape hydrologic storage through construction of ponds and restoration of wetlands to retain water for supplemental irrigation while also reducing flood risks. Primary productivity is proportional to transpiration, and analysis shows that in the U.S. Midwest both can be sustainably increased with supplemental irrigation. The proposed strategy should reduce interannual yield variability by limiting losses due to transient drought, while facilitating adoption of cropping systems that “perennialize” the landscape to take advantage of the full potential growing season. When implemented in concert, these practices should reduce the riverine nitrogen export that is a primary cause of hypoxia in the Gulf of Mexico. Erosive sediment losses should also be reduced through the combination of enhanced hydrologic storage and increased vegetative cover. Successful implementation would require watershed-scale coordination among producers and landowners. An obvious mechanism to encourage this is governmental farm policy.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-09
    Description: The application of geophysical methods, in particular, electrical resistivity measurements, may be useful for monitoring subsurface contamination. However, interpreting geophysical data without additional data and without considering the associated hydrogeochemical processes is challenging since the geophysical response is sensitive to not only heterogeneity in rock properties but also to the saturation and chemical composition of pore fluids. We present an inverse modeling framework that incorporates the simulation of hydrogeochemical processes and time-lapse electrical resistivity data and apply it to various borehole and cross-borehole data sets collected in 2008 near the S-3 Ponds at the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge site, where efforts are underway to better understand freshwater recharge and associated contaminant dilution. Our goal is to show that the coupled hydrogeochemical-geophysical modeling framework can be used to (1) develop a model that honors all the available data sets, (2) help understand the response of the geophysical data to subsurface properties and processes at the site, and (3) allow for the estimation of petrophysical parameters needed for interpreting the geophysical data. We present a series of cases involving different data sets and increasingly complex models and find that the approach provides useful information about soil properties, recharge-related transport processes, and the geophysical response. Spatial heterogeneity of the petrophysical model can be described sufficiently with two layers, and its parameters can be estimated concurrently with the hydrogeochemical parameters. For successful application of the approach, the parameters of interest must be sensitive to the available data, and the experimental conditions must be carefully modeled.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-28
    Description: Results are presented from a large-scale stated preference study designed to estimate the nonmarket benefits for households in England and Wales arising from the European Union Water Framework Directive (WFD). Multiple elicitation methods (a discrete choice experiment and two forms of contingent valuation) are employed, with the order in which they are asked randomly varied across respondents, to obtain a robust model for valuing specified WFD implementation programs applied to all of the lakes, reservoirs, rivers, canals, transitional, and coastal waters of England and Wales. The potential for subsequent policy incorporation and value transfer was enhanced by generating area-based values. These were found to vary from £2,263 to £39,168 per km2 depending on the population density around the location of the improvement, the ecological scope of that improvement, and the value elicitation method employed. While the former factors are consistent with expectations, the latter suggests that decision makers need to be aware of such methodological effects when employing derived values.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-22
    Description: Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, Image Quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3D problems. This new Conditional Image Quilting method (CIQ) is patch-based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous Multiple-point Statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract Observatory‐scale data collection efforts allow unprecedented opportunities for integrative, multidisciplinary investigations in large, complex watersheds which can affect management decisions and policy. Through the National Science Foundation‐funded REACH (REsilience under Accelerated CHange) project, in collaboration with the Intensively Managed Landscapes‐Critical Zone Observatory, we have collected a series of multidisciplinary datasets throughout the Minnesota River Basin in south‐central Minnesota, USA, a 43,400 km2 tributary to the Upper Mississippi River. Post‐glacial incision within the Minnesota River valley created an erosional landscape highly responsive to hydrologic change, allowing for transdisciplinary research into the complex cascade of environmental changes that occur due to hydrology and land use alterations from intensive agricultural management and climate change. Datasets collected include water chemistry and biogeochemical data; geochemical fingerprinting of major sediment sources; high resolution monitoring of river bluff erosion; and repeat channel cross‐sectional and bathymetry data following major floods. The data collection efforts led to development of a series of integrative reduced complexity models that provide deeper insight into how water, sediment, and nutrients route and transform through a large channel network and respond to change. These models represent the culmination of efforts to integrate interdisciplinary datasets and science to gain new insights into watershed‐scale processes in order to advance management and decision making. The purpose of this paper is to present a synthesis of the data sets and models, disseminate them to the community for further research, and identify mechanisms used to expand the temporal and spatial extent of short‐term observatory‐scale data collection efforts.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-28
    Description: Modern hydrology places nearly all its emphasis on science-as-knowledge, the hypotheses of which are increasingly expressed as physical models, whose predictions are tested by correspondence to quantitative data sets. Though arguably appropriate for applications of theory to engineering and applied science, the associated emphases on truth and degrees of certainty are not optimal for the productive and creative processes that facilitate the fundamental advancement of science as a process of discovery. The latter requires an investigative approach, where the goal is uberty, a kind of fruitfulness of inquiry, in which the abductive mode of inference adds to the much more commonly acknowledged modes of deduction and induction. The resulting world-directed approach to hydrology provides a valuable complement to the prevailing hypothesis- (theory-) directed paradigm. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-31
    Description: Along the river network, water, sediment, and nutrients are transported, cycled, and altered by coupled hydrological and biogeochemical processes. Our current understanding of the rates and processes controlling the cycling and removal of dissolved inorganic nutrients in river networks is limited due to a lack of empirical measurements in large, (non-wadeable), rivers. The goal of this paper was to develop a coupled hydrological and biogeochemical process model to simulate nutrient uptake at the network scale during summer baseflow conditions. The model was parameterized with literature values from headwater streams, and empirical measurements made in 15 rivers with varying hydrological, biological, and topographic characteristics, to simulate nutrient uptake at the network scale. We applied the coupled model to 15 catchments describing patterns in uptake for three different solutes to determine the role of rivers in network-scale nutrient cycling. Model simulation results, constrained by empirical data, suggested that rivers contributed proportionally more to nutrient removal than headwater streams given the fraction of their length represented in a network. In addition, variability of nutrient removal patterns among catchments was varied among solutes, and as expected, was influenced by nutrient concentration and discharge. Net ammonium uptake was not significantly correlated with any environmental descriptor. In contrast, net daily nitrate removal was linked to suspended chlorophyll a (an indicator of primary producers) and land use characteristics. Finally, suspended sediment characteristics and agricultural land use were correlated with net daily removal of soluble reactive phosphorus, likely reflecting abiotic sorption dynamics. Rivers are understudied relative to streams, and our model suggests that rivers can contribute more to network-scale nutrient removal than would be expected based upon their representative fraction of network channel length.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-12
    Description: Using well-established procedures for paleoflood hydrology and employing optically stimulated luminescence (OSL) geochronology, we analyzed a very well preserved natural record of 44 Upper Colorado River extreme floods with discharges ranging from 1800 to 9200 m 3 s -1 . These are the largest floods occurring during the last 2140 ± 220 years, and this natural record indicates that large floods are much more frequent than can be estimated by extrapolation from the stream gaging record that extends back to 1914. Most of these large floods occurred during the last 500 years, and the two largest floods in the record both exceeded the probable maximum flood (PMF) estimated at 8500 m 3 s -1 (300,000 cfs) for nearby Moab, Utah. Another 4 floods, with discharges greater than 7000 m 3 s -1 , occurred during the last two millennia. Flood frequency analyses using the FLDFRQ3 model yields the following values, depending on the Manning n roughness coefficients: 100-yr flood – 4670-4990 m 3 s -1 ; 500-yr flood – 6675-7270 m 3 s -1 ; 1000-yr flood – 7680-8440 m 3 s -1 . The presumed PMF discharge (8500 m 3 s -1 ) gets assigned a recurrence interval of about 1000 years, and the largest historical 1884 flood (3540 m 3 s -1 ) – a recurrence interval of 〈100 years. Flood frequency analysis for the Moab Valley based on the gaged record (1914-2012) yield 2730 m 3 s -1 for the 100-yr flood and 3185 m 3 s -1 for the 500-yr flood. This underestimation of the frequency of large floods from the gage data results from effects on that record by modern regulation of upstream river flow and associated water extraction for agriculture.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...