ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Blood. 2004; 104(11): 1917-1917. Published 2004 Nov 16. doi: 10.1182/blood.v104.11.1917.1917.  (1)
  • 45688
Collection
  • Articles  (2)
Years
Journal
Topic
  • 1
    Publication Date: 2004-11-16
    Description: B-cell chronic lymphocytic leukemia (B-CLL) is the most common leukemia in adults and is characterized by the accumulation of mature B lymphocytes in the G0/G1 phase of the cell cycle, expressing B-cell related (i.e. CD19, surface immunoglobulins) and unrelated molecules (CD5 and CD23). The signal transduction pathways underlying the abnormalities of these leukemic cells are poorly understood and no data are available on deregulated cell signalling in B-CLL. Since Lyn activation plays a pivotal role in the signaling cascade triggered by BCR engagement, we investigated whether this kinase may be involved in CLL pathogenesis. In this study, we investigated freshly isolated and purified malignant B cells obtained from 40 CLL patients and we observed that the Src-kinase Lyn, the switch molecule coupling B-cell-receptor to downstream signaling, displays anomalous properties. Western blot and confocal analyses demonstrated that Lyn is overexpressed at the protein level in leukemic cells as compared to normal B-lymphocytes with a substantial aliquot of the kinase anomalously present in the cytosol of leukemic cells. While in normal B lymphocytes Lyn activation is triggered by B-cell-receptor engagement with anti-IgM antibodies, in freshly isolated leukemic cells this kinase is constitutively active and accounts for high basal protein tyrosine-phosphorylation and low responsiveness to IgM-ligation. To address the question of whether the upregulation of Lyn protein and activity plays a role in the defective apoptosis of leukemic cells, we investigated the relationship between Lyn and the cell survival of malignant lymphocytes in the presence of either dexamethazone and cyclosporin A, which are known to induce apoptosis of human lymphocytes, or PP2 and SU6656, which are selective inhibitors of Lyn. When leukemic cells were cultured in the presence of cyclosporin A or dexamethazone, a marked increase in apoptosis was observed as compared to cells cultured in medium alone, and this effect correlated with a great decrease in both basal activity and protein level of Lyn. The exposure of the leukemic cells to PP2 and SU6656 caused both the inhibition of the overexpressed Lyn activity and marked cell apoptosis. These findings suggest a direct correlation between high basal Lyn activity and defects in the induction of apoptosis in leukemic cells. They also support a critical role for Lyn in B-CLL pathogenesis and identify this tyrosine kinase as a potential therapeutic target for drugs capable of inducing apoptosis in B-CLL leukemic cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-13
    Description: Fyn is a tyrosine kinase belonging to the Src family (Src-Family-Kinase, SFK), ubiquitously expressed. Previously, we reported that Fyn is important in stress erythropoiesis. Here, we show that in red cells Fyn specifically stimulates G6PD activity, resulting in a 3-fold increase of the enzyme catalytic activity (kcat) by phosphorylating tyrosine (Tyr)-401. We found Tyr-401 on G6PD as functional target of Fyn in normal human red blood cells (RBC), being undetectable in G6PD deficient RBCs (G6PD-Mediterranean and G6PD-Genova). Indeed, Tyr-401 is located to a region of the G6PD molecule critical for the formation of the enzymatically active dimer. Amino acid replacements in this region are mostly associated with a chronic hemolysis phenotype. Using mutagenesis approach, we demonstrated that the phosphorylation status of Tyr401 modulates the interaction of G6PD with G6P and stabilizes G6PD in a catalytically more efficient conformation. RBCs from Fyn-/-mice are defective in G6PD activity, resulting in increased susceptibility to primaquine-induced intravascular hemolysis. This negatively affected the recycling of reduced Prx2 in response to oxidative stress, indicating that defective G6PD phosphorylation impairs defense against oxidation. In human RBCs, we confirm the involvement of the thioredoxin/Prx2 system in the increase vulnerability of G6PD deficient RBCs to oxidation. In conclusion, our data suggest that Fyn is an oxidative radical sensor, and that Fyn-mediated Tyr-401 phosphorylation, by increasing G6PD activity, plays an important role in the physiology of RBCs. Failure of G6PD activation by this mechanism may be a major limiting factor in the ability of G6PD deficient RBCs to withstand oxidative stress. Disclosures Cappellini: Genzyme/Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Vifor Pharmaceutical: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Honoraria; CRISPR Therapeutics: Membership on an entity's Board of Directors or advisory committees. Forni:Novartis, Iron chelation: Research Funding; Celgene, Erithropoiesis Stimulation: Research Funding; Roche, Erithropoiesis Stimulation: Research Funding; BlueBirdBio: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...