ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 42429
Collection
  • Articles  (2)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2014-06-27
    Description: Branched glycerol dialkyl glycerol tetraethers (bGDGTs) have been show promising for continental paleotemperature studies in loess-paleosol sequences (LPSs). Thus far, however, little is known about the effect of soil moisture on their distributions on the Chinese Loess Plateau (CLP). In this study, the relationships between environmental variables and the cyclization of bGDGTs (the so called CBT index) were investigated in a comprehensive set of surface soils in the CLP and its adjacent arid/semi-arid areas. We find that CBT correlates best with soil water content (SWC) or mean annual precipitation (MAP) for the total sample set. Particularly for the CLP soils, there is a significant positive relationship between CBT and MAP (CBT = −0.0021 · MAP + 1.7, n = 37, R2 = 0.87; MAP range: 210–680 mm). This indicates that CBT is mainly controlled by soil moisture in the alkalescent soils (pH 〉 7) in arid/semi-arid regions, where it is not sensitive to soil pH. Therefore, we suggest that CBT can potentially be used as a palaeorainfall proxy on the CLP. According to the preliminary CBT–MAP relationship for modern CLP soils, palaeorainfall history was reconstructed from three LPSs (Yuanbao, Lantian, and Mangshan) with published bGDGT data spanning the past 70 ka. The CBT-derived MAP records of the three sites consistently show precession-driven variations resembling the speleothem δ18O monsoon record, and are also in general accord with the fluctuations of the respective magnetic susceptibility (MS) record, supporting CBT as a reasonable proxy for palaeorainfall reconstruction in LPS studies. Moreover, the comparison of CBT-derived MAP and bGDGT-derived temperature may enable us to further assess the relative timing and magnitude of hydrological and thermal changes on the CLP, independent of chronology.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-07
    Description: TEX86 (TetraEther indeX of glycerol dialkyl glycerol tetraethers (GDGTs) with 86 carbon atoms) has been widely applied to reconstruct (paleo-) sea surface temperature (SST). While Marine Group I (MG I) Thaumarchaeota have been commonly believed to be the source for GDGTs, Marine Group II (MG II Euryarchaeota) have recently been suggested to contribute significantly to the GDGT pool in the ocean. However, little is known how the MG II Euryarchaeota-derived GDGTs may influence TEX86 in marine sediment record. In this study, we characterize MG II Euryarchaeota-produced GDGTs and assess the likely effect of these tetraether lipids on TEX86. Analyses of core lipid (CL-) and intact polar lipid (IPL-) based GDGTs, 454 sequencing and quantitative polymerase chain reaction (qPCR) targeting MG II Euryarchaeota were performed on suspended particulate matter (SPM) and surface sediments collected along a salinity gradient from the lower Pearl River (river water) and its estuary (mixing water) to the coastal South China Sea (seawater). The results showed that the community composition varied along the salinity gradient with MG II Euryarchaeota as the second dominant group in the mixing water and seawater. qPCR data indicated that the abundance of MG II Euryarchaeota in the mixing water was three to four orders of magnitude higher than the river water and seawater. Significant linear correlations were observed between the gene abundance ratio of MG II Euryarchaeota vs. total archaea and the relative abundance of GDGTs-1, -2, -3, or -4 as well as the ring index based on these compounds, which collectively suggest that MG II Euryarchaeota may actively produce GDGTs in the water column. These results also show strong evidence that MG II Euryarchaeota synthesizing GDGTs with 1–4 cyclopentane moieties may bias TEX86 in the water column and sediments. This study highlights that valid interpretation of TEX86 in sediment record, particularly in coastal oceans, needs to consider the contribution from MG II Euryarchaeota.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...