ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • 19030
Collection
  • Articles  (2)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2013-01-07
    Description: Multi-annual satellite measurements of tropospheric NO2 columns are used for evaluation of CO2 emission changes in China in the period from 1996 to 2008. Indirect annual top-down estimates of CO2 emissions are derived from the satellite NO2 columns measurements by means of a simple inverse modeling procedure involving simulations performed with the CHIMERE mesoscale chemistry transport model and the CO2 to NOx emission ratios from the Emission Database for Global Atmospheric Research version 4.2 (EDGAR v4.2) global anthropogenic emission inventory. Exponential trends in the normalized time series of annual emission are evaluated separately for the periods from 1996 to 2001 and from 2001 to 2008. The results indicate that the both periods manifest strong positive trends in the CO2 emissions, and that the trend in the second period was significantly larger than the trend in the first period. Specifically, the trends in the first and second periods are estimated to be in the range from 3.7 to 8.0 and from 9.5 to 13.0 percent per year, respectively, taking into account both statistical and probable systematic uncertainties. Comparison of our top-down estimates of the CO2 emission changes with the corresponding bottom-up estimates provided by EDGAR v4.2 and Global Carbon Project (GCP) emission inventories reveals that while acceleration of the CO2 emission growth in the considered period is a common feature of the both kinds of estimates, nonlinearity in the CO2 emission changes may be strongly exaggerated in the emission inventories. Specifically, the atmospheric NO2 observations do not confirm the existence of a sharp bend in the emission inventory data time series in the period from 2000 to 2002. A significant quantitative difference is revealed between the bottom-up and top-down estimates of the CO2 emission trend in the period from 1996 to 2001 (specifically, the trend was not positive according to the emission inventories, but is strongly positive in our estimates). These results confirm the findings of earlier studies which indicated probable large uncertainties in the energy production and other activity data from international energy statistics used as the input information in the emission inventories for China. For the period from 2001 to 2008, the different kinds of estimates agree within the uncertainty range. In general, satellite measurements of tropospheric NO2 are shown to be a useful source of information on CO2 sources colocated with sources of nitrogen oxides; the corresponding potential of these measurements should be exploited further in future studies.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-29
    Description: A method to constrain carbon dioxide (CO2) emissions from open biomass burning by using satellite observations of co-emitted species and a chemistry-transport model (CTM) is proposed and applied to the case of wildfires in Siberia. CO2 emissions are assessed by means of an emission model assuming a direct relationship between the biomass burning rate (BBR) and the Fire Radiative Power (FRP) derived from the MODIS measurements. The key features of the method are (1) estimating the FRP-to-BBR conversion factors (α) for different vegetative land cover types by assimilating the satellite observations of co-emitted species into the CTM, (2) optimal combination of the estimates of α derived independently from satellite observations of different species (CO and aerosol in this study), and (3) estimation of the diurnal cycle of the fire emissions directly from the FRP measurements. Values of α for forest and grassland fires in Siberia and their uncertainties are estimated by using the IASI carbon monoxide (CO) retrievals and the MODIS aerosol optical depth (AOD) measurements combined with outputs from the CHIMERE mesoscale chemistry transport model. The constrained CO emissions are validated through comparison of the respective simulations with the independent data of ground based CO measurements at the ZOTTO site. Using our optimal regional-scale estimates of the conversion factors (which are found to be in agreement with the earlier published estimates obtained from local measurements of experimental fires), the total CO2 emissions from wildfires in Siberia in 2012 are estimated to be in the range from 262 to 477 Tg C, with the optimal (maximum likelihood) value of 354 Tg C. Sensitivity test cases featuring different assumptions regarding the injection height and diurnal variations of emissions indicate that the derived estimates of the total CO2 emissions in Siberia are robust with respect to the modelling options (the different estimates vary within less than 10% of their magnitude). The obtained CO2 emission estimates for several years are compared with the independent estimates provided by the GFED3.1 and GFASv1.0 global emission inventories. It is found that our "top-down" estimates for the total annual biomass burning CO2 emissions in the period from 2007 to 2011 in Siberia are by factors of 2.3 and 1.7 larger than the respective bottom-up estimates; these discrepancies cannot be fully explained by uncertainties in our estimates. There are also considerable differences in the spatial distribution of the different emission estimates; some of those differences have a systematic character and require further analysis.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...