ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019
    Beschreibung: Mass evacuation should be conducted when a disaster threatens within a regional scale. It is reported that 400,000 people were evacuated during the last eruption of Merapi Volcano in 2010. Such a large-scale evacuation can lead to chaos or congestion, unless well managed. Staged evacuation has been investigated as a solution to reducing the degree of chaos during evacuation processes. However, there is a limited conception of how the stages should be ordered in terms of which group should move first and which group should follow. This paper proposes to develop evacuation stage ordering based on the geographical character of the people at risk and examine the ordering scenarios through an agent-based model of evacuation. We use several geographical features, such as proximity to the hazard, road network conditions (accessibility), size of the population, and demographics as the parameters for ranking the order of each population unit in GIS. From this concept, we produced several scenarios of ranking based on different weightings of the parameters. We applied the scenarios in an agent-based model of volcanic evacuation experiment to observe the results. Afterwards, the results were evaluated based on the ability to reduce the risk and spatio-temporal traffic density along road networks compared to the result of simultaneous evacuation to establish the relative effectiveness of the outcome. The result shows that the staged scenario has a better ability to reduce the potential traffic congestion during the peak time of the evacuation compared to the simultaneous strategy. However, the simultaneous strategy has better performance regarding the speed of reducing the risk. An evaluation of the relative performance of the four varying staged scenarios is also presented and discussed in this paper.
    Digitale ISSN: 2076-3263
    Thema: Geologie und Paläontologie
    Publiziert von MDPI
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-05-31
    Beschreibung: Geosciences, Vol. 8, Pages 196: Modelling Individual Evacuation Decisions during Natural Disasters: A Case Study of Volcanic Crisis in Merapi, Indonesia Geosciences doi: 10.3390/geosciences8060196 Authors: Jumadi Alison J. Heppenstall Nick S. Malleson Steve J. Carver Duncan J. Quincey Vern R. Manville As the size of human populations increases, so does the severity of the impacts of natural disasters. This is partly because more people are now occupying areas which are susceptible to hazardous natural events, hence, evacuation is needed when such events occur. Evacuation can be the most important action to minimise the impact of any disaster, but in many cases there are always people who are reluctant to leave. This paper describes an agent-based model (ABM) of evacuation decisions, focusing on the emergence of reluctant people in times of crisis and using Merapi, Indonesia as a case study. The individual evacuation decision model is influenced by several factors formulated from a literature review and survey. We categorised the factors influencing evacuation decisions into two opposing forces, namely, the driving factors to leave (evacuate) versus those to stay, to formulate the model. The evacuation decision (to stay/leave) of an agent is based on an evaluation of the strength of these driving factors using threshold-based rules. This ABM was utilised with a synthetic population from census microdata, in which everyone is characterised by the decision rule. Three scenarios with varying parameters are examined to calibrate the model. Validations were conducted using a retrodictive approach by performing spatial and temporal comparisons between the outputs of simulation and the real data. We present the results of the simulations and discuss the outcomes to conclude with the most plausible scenario.
    Digitale ISSN: 2076-3263
    Thema: Geologie und Paläontologie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-07-18
    Beschreibung: Mass evacuation should be conducted when a disaster threatens within a regional scale. It is reported that 400,000 people were evacuated during the last eruption of Merapi Volcano in 2010. Such a large-scale evacuation can lead to chaos or congestion, unless well managed. Staged evacuation has been investigated as a solution to reducing the degree of chaos during evacuation processes. However, there is a limited conception of how the stages should be ordered in terms of which group should move first and which group should follow. This paper proposes to develop evacuation stage ordering based on the geographical character of the people at risk and examine the ordering scenarios through an agent-based model of evacuation. We use several geographical features, such as proximity to the hazard, road network conditions (accessibility), size of the population, and demographics as the parameters for ranking the order of each population unit in GIS. From this concept, we produced several scenarios of ranking based on different weightings of the parameters. We applied the scenarios in an agent-based model of volcanic evacuation experiment to observe the results. Afterwards, the results were evaluated based on the ability to reduce the risk and spatio-temporal traffic density along road networks compared to the result of simultaneous evacuation to establish the relative effectiveness of the outcome. The result shows that the staged scenario has a better ability to reduce the potential traffic congestion during the peak time of the evacuation compared to the simultaneous strategy. However, the simultaneous strategy has better performance regarding the speed of reducing the risk. An evaluation of the relative performance of the four varying staged scenarios is also presented and discussed in this paper.
    Digitale ISSN: 2076-3263
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...