ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: The LuoJia1-01 satellite can acquire high-resolution, high-sensitivity nighttime light data for night remote sensing applications. LuoJia1-01 is equipped with a 4-megapixel CMOS sensor composed of 2048 × 2048 unique detectors that record weak nighttime light on Earth. Owing to minute variations in manufacturing and temporal degradation, each detector’s behavior varies when exposed to uniform radiance, resulting in noticeable detector-level errors in the acquired imagery. Radiometric calibration helps to eliminate these detector-level errors. For the nighttime sensor of LuoJia1-01, it is difficult to directly use the nighttime light data to calibrate the detector-level errors, because at night there is no large-area uniform light source. This paper reports an on-orbit radiometric calibration method that uses daytime data to estimate the relative calibration coefficients for each detector in the LuoJia1-01 nighttime sensor, and uses the calibrated data to correct nighttime data. The image sensor has a high dynamic range (HDR) mode, which is optimized for day/night imaging applications. An HDR image can be constructed using low- and high-gain HDR images captured in HDR mode. Hence, a day-to-night radiometric reference transfer model, which uses daytime uniform calibration to calibrate the detector non-uniformity of the nighttime sensor, is herein built for LuoJia1-01. Owing to the lack of calibration equipment on-board LuoJia1-01, the dark current of the nighttime sensor is calibrated by collecting no-light desert images at new moon. The results show that in HDR mode (1) the root mean square of mean for each detector in low-gain (high-gain) images is better than 0.04 (0.07) in digital number (DN) after dark current correction; (2) the DN relationship between low- and high-gain images conforms to the quadratic polynomial mode; (3) streaking metrics are better than 0.2% after relative calibration; and (4) the nighttime sensor has the same relative correction parameters at different exposure times for the same gain parameters.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Information entropy and interclass separability are adopted as the evaluation criteria of dimension reduction for hyperspectral remote sensor data. However, it is rather single-faceted to simply use either information entropy or interclass separability as evaluation criteria, and will lead to a single-target problem. In this case, the chosen optimal band combination may be unfavorable for the improvement of follow-up classification accuracy. Thus, in this work, inter-band correlation is considered as the premise, and information entropy and interclass separability are synthesized as the evaluation criterion of dimension reduction. The multi-objective particle swarm optimization algorithm is easy to implement and characterized by rapid convergence. It is adopted to search for the optimal band combination. In addition, game theory is also introduced to dimension reduction to coordinate potential conflicts when both information entropy and interclass separability are used to search for the optimal band combination. Experimental results reveal that compared with the dimensionality reduction method, which only uses information entropy or Bhattacharyya distance as the evaluation criterion, and the method combining multiple criterions into one by weighting, the proposed method achieves global optimum more easily, and then obtains a better band combination and possess higher classification accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-16
    Description: Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV) of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-10
    Description: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants found in the environment. Immunoassays represent useful analytical methods to complement traditional analytical procedures for PAHs. Cross-reactivity (CR) is a very useful character to evaluate the extent of cross-reaction of a cross-reactant in immunoreactions and immunoassays. The quantitative relationships between the molecular properties and the CR of PAHs were established by stepwise multiple linear regression, principal component regression and partial least square regression, using the data of two commercial enzyme-linked immunosorbent assay (ELISA) kits. The objective is to find the most important molecular properties that affect the CR, and predict the CR by multiple regression methods. The results show that the physicochemical, electronic and topological properties of the PAH molecules have an integrated effect on the CR properties for the two ELISAs, among which molar solubility (Sm) and valence molecular connectivity index (3χv) are the most important factors. The obtained regression equations for RisC kit are all statistically significant (p 〈 0.005) and show satisfactory ability for predicting CR values, while equations for RaPID kit are all not significant (p 〉 0.05) and not suitable for predicting. It is probably because that the RisC immunoassay employs a monoclonal antibody, while the RaPID kit is based on polyclonal antibody. Considering the important effect of solubility on the CR values, cross-reaction potential (CRP) is calculated and used as a complement of CR for evaluation of cross-reactions in immunoassays. Only the compounds with both high CR and high CRP can cause intense cross-reactions in immunoassays.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The current research on integrated navigation is mainly focused on filtering or integrated navigation equipment. Studies systematically comparing and analyzing how to choose appropriate integrated filtering methods under different circumstances are lacking. This paper focuses on integrated navigation filters that are used by different filters and attitude parameters for inertial integrated navigation. We researched integrated navigation filters, established algorithms, and examined the relative merits for practical integrated navigation. Some suggestions for the use of filtering algorithms are provided.We completed simulations and car-mounted experiments for low-cost strapdown inertial navigation system(SINS) to assess the performance of the integrated navigation filtering algorithms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-07-06
    Description: Sensors, Vol. 18, Pages 2166: A Blade Defect Diagnosis Method by Fusing Blade Tip Timing and Tip Clearance Information Sensors doi: 10.3390/s18072166 Authors: Ji-wang Zhang Lai-bin Zhang Li-xiang Duan Blade tip timing (BTT) technology is considered the most promising method for blade vibration measurements due to the advantages of its simplicity and non-contact measurement capacity. Nevertheless, BTT technology still suffers from two problems, which are (1) the requirements of domain expertise and prior knowledge of BTT signals analysis due to severe under-sampling; and (2) that the traditional BTT method can only judge whether there is a defect in the blade but it cannot judge the severity and the location of the defect. Thus, how to overcome the above drawbacks has become a big challenge. Aiming at under-sampled BTT signals, a feature learning method using a convolutional neural network (CNN) is introduced. In this way, some new fault-sensitive features can be adaptively learned from raw under-sampled data and it is therefore no longer necessary to rely on prior knowledge. At the same time, research has found that tip clearance (TC) is also very sensitive to the blade state, especially regarding defect severity and location. A novel analysis method fusing TC and BTT signals is proposed in this paper. The goal of this approach is to integrate tip clearance information with tip timing information for blade fault detection. The method consists of four key steps: First, we extract the TC and BTT signals from raw pulse data; second, TC statistical features and BTT deep learning features will be extracted and fused using the kernel principal component analysis (KPCA) method; then, model training and selection are carried out; and finally, 16 sets of experiments are carried out to validate the feasibility of the proposed method and the classification accuracy achieves 95%, which is far higher than the traditional diagnostic method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-12
    Description: Sensors, Vol. 18, Pages 2236: Radiation-Resistant Er3+-Doped Superfluorescent Fiber Sources Sensors doi: 10.3390/s18072236 Authors: Chengxiang Liu Xu Wu Jianhui Zhu Nie He Zhuoyan Li Gongshen Zhang Li Zhang Shuangchen Ruan The radiation effects of three Er3+-doped superfluorescent fiber sources (SFSs), which are based on three segments of Er-doped fibers with different lengths, are studied experimentally. We observed that the radiation-induced attenuation of the signal light of the 1530 nm band for an SFS is less than that of the 1560 nm band. Thus, the trimming technique of the Gauss-like spectra is investigated to reduce the mean wavelength drift. A filter was customized and used in superfluorescent fiber sources. To further reduce output power loss, the method with feedback control of pump power was adopted in the SFS. Then, the trimming spectral SFS with pump feedback control was tested under irradiation environment at the dose rate of 2.988 Gy/h. The experimental results demonstrate that the mean wavelength drift is <40 ppm and the loss of output power is <0.2 dB under a total dose higher than 1000 Gy. These findings confirm the significance of the method in improving radiation-resistant capabilities of fiber sources under irradiation environments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-03
    Description: The characteristics of two types of surface acoustic waves SAWs (Rayleigh waves and Love waves) propagating in bilayered structures of ( 11 2 ¯ 0 ) ZnO/R-sapphire are simulated by a finite element method (FEM) model, in which both SAWs have crossed propagation directions. Furthermore, based on the bilayered structures, the frequency responses of Rayleigh wave and Love wave humidity sensors are also simulated. Meanwhile, the frequency shifts, insertion loss changes and then the sensitivities of both humidity sensors induced by the adsorbed water layer perturbations, including the mechanical and electrical factors, are calculated numerically. Generally, the characteristics and performances of both sensors are strongly dependent on the thickness of the ZnO films. By appropriate selecting the ratio of the film thickness to SAW wavelength for each kind of the sensors, the performances of both sensors can be optimized.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-06
    Description: Sensors, Vol. 17, Pages 2811: Dual-Wavelength Laser Speckle Contrast Imaging (dwLSCI) Improves Chronic Measurement of Superficial Blood Flow in Hands Sensors doi: 10.3390/s17122811 Authors: Lingke Zhang Li Ding Miao Li Xiaoli Zhang Diansan Su Jie Jia Peng Miao Laser speckle contrast imaging (LSCI) has been widely used to determine blood flow and perfusion in biological tissues. The physical model of traditional LSCI ignores the effects of scattering property distribution in relation to speckle correlation time τc and blood flow v, which further results in biased estimation. In this study, we developed a dual-wavelength laser speckle contrast imaging (dwLSCI) method and a portable device for imaging the blood flow and tissue perfusion in human hands. Experimental data showed that dwLSCI could retrieve the vein vasculatures under the surface skin, and it further provided accurate measurements of vein blood flow signals, tissue perfusion signals, and fingertip perfusion signals, which assist with assessments of rehabilitation therapy for stroke patients. Fingertip perfusion signals demonstrated better performance in early assessments, while vein blood flow signals assisted the Fugl–Meyer Assessment Scale (FMA) and the Wolf Motor Function Test (WMFT) behavior assessments. As a general noninvasive imaging method, dwLSCI can be applied in clinical studies related to hand functions combined with behavior assessments.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-28
    Description: It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn’t be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...