ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Previous study has demonstrated that the riboflavin treatment promoted the early ripening of the ‘Kyoho’ grape berry. However, the molecular mechanism causing this was unclear. In order to reveal the regulation mechanism of riboflavin treatment on grape berry development and ripening, the different berry developmental stages of the ‘Kyoho’ berry treated with 0.5 mmol/L of riboflavin was sampled for transcriptome profiling. RNA-seq revealed that 1526 and 430 genes were up-regulated and down-regulated, respectively, for the comparisons of the treatment to the control. TCseq analysis showed that the expression patterns of most of the genes were similar between the treatment and the control, except for some genes that were related to the chlorophyll metabolism, photosynthesis–antenna proteins, and photosynthesis, which were revealed by the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differentially expressed genes and weighted gene co-expression network analysis (WGCNA) analysis identified some significantly differentially expressed genes and some hub genes, including up-regulation of the photosynthesis-related ELIP1 and growth and development-related GDSL; and down-regulation of the oxidative stress-related ATHSP22 and berry softening-related XTH32 and GH9B15. The results suggested that the riboflavin treatment resulted in the variations of the expression levels of these genes, and then led to the early ripening of the ‘Kyoho’ berry.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-15
    Description: Next-generation sequencing technology has made it possible to detect rare genetic variants associated with complex human traits. In recent literature, various methods specifically designed for rare variants are proposed. These tests can be broadly classified into burden and nonburden tests. In this paper, we take advantage of the burden and nonburden tests, and consider the common effect and the individual deviations from the common effect. To achieve robustness, we use two methods of combining p-values, Fisher’s method and the minimum-p method. In rare variant association studies, to improve the power of the tests, we explore the advantage of the extreme phenotype sampling. At first, we dichotomize the continuous phenotypes before analysis, and the two extremes are treated as two different groups representing a dichotomous phenotype. We next compare the powers of several methods based on extreme phenotype sampling and random sampling. Extensive simulation studies show that our proposed methods by using extreme phenotype sampling are the most powerful or very close to the most powerful one in various settings of true models when the same sample size is used.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: In order to study the assembly mechanism of phycocyanin in red algae, the apo-phycocyanin genes (pcB and pcA) were cloned from Gracilariopsis lemaneiformis. The full length of phycocyanin β-subunit (pcB) contained 519 nucleotides encoding a protein of 172 amino acids, and the full length of phycocyanin α-subunit(pcA) contained 489 nucleotides encoding a protein of 162 amino acids. Expression vector pACYCDuet-pcB-pcA was constructed and transformed into E. coli BL21 with pET-ho-pcyA (containing ho and pcyA gene to synthesize phycocyanobilin). The recombinant strain showed fluorescence activity, indicating the expression of optically active phycocyanin in E. coli. To further investigate the possible binding sites between phycocyanobilin and apo-phycocyanin, Cys-82 and Cys-153 of the β subunit and the Cys-84 of the α subunit were respectively mutated, and four mutants were obtained. All mutant strains had lower fluorescence intensity than the non-mutant strains, which indicated that these mutation sites could be the active binding sites between apo-phycocyanin and phycocyanobilin (PCB). This research provides a supplement for the comprehensive understanding of the assembly mechanism of optically active phycocyanin in red algae.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Mitogen-activated protein kinase (MAPK) signaling pathway plays key roles in sensing extracellular signals and transmitting them from the cell membrane to the nucleus in response to various environmental stimuli. A MAPKKK protein CgMck1 in Colletotrichum gloeosporioides was characterized. Phenotypic analyses of the ∆Cgmck1 mutant showed that the CgMck1 was required for vegetative growth, fruiting body development, and sporulation. Additionally, the CgMCK1 deletion mutant showed significant defects in cell wall integrity, and responses to osmotic stresses. The mutant abolished the ability to develop appressorium, and lost pathogenicity to host plants. The ∆Cgmck1 mutant also exhibited a higher sensitivity to antifungal bacterium agent Bacillus velezensis. The deletion mutants of downstream MAPK cascades components CgMkk1 and CgMps1 showed similar defects to the ∆Cgmck1 mutant. In conclusion, CgMck1 is involved in the regulation of vegetative growth, asexual development, cell wall integrity, stresses resistance, and infection morphogenesis in C. gloeosporioides.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Alternatively-activated pathways have been observed in biological experiments in cancer studies, but the concept had not been fully explored in computational cancer system biology. Therefore, an alternatively-activated pathway identification method was proposed and applied to primary breast cancer and breast cancer liver metastasis research using microarray data. Interestingly, the results show that cytokine-cytokine receptor interaction and calcium signaling were significantly enriched under both conditions. TGF beta signaling was found to be the hub in network topology analysis. In total, three types of alternatively-activated pathways were recognized. In the cytokine-cytokine receptor interaction pathway, four active alteration patterns in gene pairs were noticed. Thirteen cytokine-cytokine receptor pairs with inverse activity changes of both genes were verified by the literature. The second type was that some sub-pathways were active under only one condition. For the third type, nodes were significantly active in both conditions, but with different active genes. In the calcium signaling and TGF beta signaling pathways, node E2F5 and E2F4 were significantly active in primary breast cancer and metastasis, respectively. Overall, our study demonstrated the first time using microarray data to identify alternatively-activated pathways in breast cancer liver metastasis. The results showed that the proposed method was valid and effective, which could be helpful for future research for understanding the mechanism of breast cancer metastasis.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-08
    Description: Black locust (Robinia pseudoacacia L. of the family Fabaceae) is an ecologically and economically important deciduous tree. However, few genomic resources are available for this forest species, and few effective expressed sequence tag-derived simple sequence repeat (EST-SSR) markers have been developed to date. In this study, paired-end sequencing was used to sequence transcriptomes of R. pseudoacacia by the Illumina HiSeq TM2000 platform, and EST-SSR loci were identified by de novo assembly. Furthermore, a total of 1697 primer pairs were successfully designed, from which 286 primers met the selection screening criteria; 94 pairs were randomly selected and tested for validation using polymerase chain reaction amplification. Forty-five primers were verified as polymorphic, with clear bands. The polymorphism information content values were 0.033–0.765, the number of alleles per locus ranged from 2 to 10, and the observed and expected heterozygosities were 0.000–0.931 and 0.035–0.810, respectively, indicating a high level of informativeness. Subsequently, 45 polymorphic EST-SSR loci were tested for amplification efficiency, using the verified primers, in an additional nine species of Leguminosae, 23 loci were amplified in more than three species, of which two loci were amplified successfully in all species. These EST-SSR markers provide a valuable tool for investigating the genetic diversity and population structure of R. pseudoacacia, constructing a DNA fingerprint database, performing quantitative trait locus mapping, and preserving genetic information.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: The authors wish to make the following correction to this paper [...]
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Self-interacting proteins (SIPs) is of paramount importance in current molecular biology. There have been developed a number of traditional biological experiment methods for predicting SIPs in the past few years. However, these methods are costly, time-consuming and inefficient, and often limit their usage for predicting SIPs. Therefore, the development of computational method emerges at the times require. In this paper, we for the first time proposed a novel deep learning model which combined natural language processing (NLP) method for potential SIPs prediction from the protein sequence information. More specifically, the protein sequence is de novo assembled by k-mers. Then, we obtained the global vectors representation for each protein sequences by using natural language processing (NLP) technique. Finally, based on the knowledge of known self-interacting and non-interacting proteins, a multi-grained cascade forest model is trained to predict SIPs. Comprehensive experiments were performed on yeast and human datasets, which obtained an accuracy rate of 91.45% and 93.12%, respectively. From our evaluations, the experimental results show that the use of amino acid semantics information is very helpful for addressing the problem of sequences containing both self-interacting and non-interacting pairs of proteins. This work would have potential applications for various biological classification problems.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...