ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Water  (1)
  • Water. 2017; 9(8): 564. Published 2017 Jul 27. doi: 10.3390/w9080564.  (1)
  • 125281
Collection
  • Articles  (2)
Years
Journal
  • 1
    Publication Date: 2017-07-28
    Description: Water, Vol. 9, Pages 564: Modelling Fine Sediment Dynamics: Towards a Common Erosion Law for Fine Sand, Mud and Mixtures Water doi: 10.3390/w9080564 Authors: Baptiste Mengual Pierre Hir Florence Cayocca Thierry Garlan This study describes the building of a common erosion law for fine sand and mud, mixed or not, in the case of a typical continental shelf environment, the Bay of Biscay shelf, characterized by slightly energetic conditions and a seabed mainly composed of fine sand and muddy sediments. A 3D realistic hydro-sedimentary model was used to assess the influence of the erosion law setting on sediment dynamics (turbidity, seabed evolution). A pure sand erosion law was applied when the mud fraction in the surficial sediment was lower than a first critical value, and a pure mud erosion law above a second critical value. Both sand and mud erosion laws are formulated similarly, with different parameters (erodibility parameter, critical shear stress and power of the excess shear stress). Several transition trends (linear or exponential) describing variations in these erosion-related parameters between the two critical mud fractions were tested. Suspended sediment concentrations obtained from simulations were compared to measurements taken on the Bay of Biscay shelf with an acoustic profiler over the entire water column. On the one hand, results show that defining an abrupt exponential transition improves model results regarding measurements. On the other hand, they underline the need to define a first critical mud fraction of 10 to 20%, corresponding to a critical clay content of 3–6%, below which pure sand erosion should be prescribed. Both conclusions agree with results of experimental studies reported in the literature mentioning a drastic change in erosion mode above a critical clay content of 2–10% in the mixture. Results also provide evidence for the importance of considering advection in this kind of validation with in situ observations, which is likely to considerably influence both water column and seabed sediment dynamics.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-27
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...