ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-06
    Description: An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p 〈 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer’s accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-03
    Description: The use of Remotely Piloted Aircraft Systems (RPAS) as well as newer automated unmanned aerial vehicles is becoming a standard method in remote sensing studies requiring high spatial resolution (〈1 m) and very precise temporal data to capture phenological events. In this study we use a low cost rotorcraft to map Eriophorum vaginatum at Mer Bleue, an ombrotrophic bog located east of Ottawa, ON, Canada. We focus on E. vaginatum because this sedge plays an important role in methane (CH4) gas exchange in peatlands. Using the remote controlled rotorcraft we were able to record, process, and mosaic 11.1 hectares of 4.5 cm spatial resolution imagery extracted from individual frames of video recordings (post georegistration RMSE 4.90 ± 4.95 cm). Our results, based on a supervised classification (96% accuracy) of the red, green, blue image planes, indicate a total tussock cover of 2,417 m2. Because the basal area of the plant is more relevant for calculating its contribution to the CH4 flux, the tussock area was related to the basal area from field data (R2 = 0.88, p 〈 0.0001). Our final results indicate a total basal area of 1,786 ± 62.8 m2. Based on temporal measurements of CH4 flux from the peatland as a whole that vary over the growing season, we estimate the E. vaginatum contribution to range from 3.0% to 17.3% of that total. Overall, our low cost approach was an effective non-destructive way to derive E. vaginatum coverage and estimate CH4 exchange over the growing season.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: Fisheries surveys over broad spatial areas are crucial in defining and delineating appropriate fisheries management areas. Yet accurate mapping and tracking of fishing activities remain largely restricted to developed countries with sufficient resources to use automated identification systems and vessel monitoring systems. For many countries, the spatial extent and boundaries of fishing grounds are not completely known. We used satellite images at night to detect fishing grounds in the Philippines for fishing gears that use powerful lights to attract coastal pelagic fishes. We used nightly boat detection data, extracted by U.S. NOAA from the Visible Infrared Imaging Radiometer Suite (VIIRS), for the Philippines from 2012 to 2016, covering 1713 nights, to examine spatio-temporal patterns of fishing activities in the country. Using density-based clustering, we identified 134 core fishing areas (CFAs) ranging in size from 6 to 23,215 km2 within the Philippines’ contiguous maritime zone. The CFAs had different seasonal patterns and range of intensities in total light output, possibly reflecting differences in multi-gear and multi-species signatures of fishing activities in each fishing ground. Using maximum entropy modeling, we identified bathymetry and chlorophyll as the main environmental predictors of spatial occurrence of these CFAs when analyzed together, highlighting the multi-gear nature of the CFAs. Applications of the model to specific CFAs identified different environmental drivers of fishing distribution, coinciding with known oceanographic associations for a CFA’s dominant target species. This case study highlights nighttime satellite images as a useful source of spatial fishing effort information for fisheries, especially in Southeast Asia.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: Substrate complexity is strongly related to biodiversity in aquatic habitats. We illustrate a novel framework, based on Structure-from-Motion photogrammetry (SfM) and Multi-View Stereo (MVS) photogrammetry, to quantify habitat complexity in freshwater ecosystems from Unmanned Aerial Vehicle (UAV) and underwater photography. We analysed sites in the Xingu river basin, Brazil, to reconstruct the 3D structure of the substrate and identify and map habitat classes important for maintaining fish assemblage biodiversity. From the digital models we calculated habitat complexity metrics including rugosity, slope and 3D fractal dimension. The UAV based SfM-MVS products were generated at a ground sampling distance (GSD) of 1.20–2.38 cm while the underwater photography produced a GSD of 1 mm. Our results show how these products provide spatially explicit complexity metrics, which are more comprehensive than conventional arbitrary cross sections. Shallow neural network classification of SfM-MVS products of substrate exposed in the dry season resulted in high accuracies across classes. UAV and underwater SfM-MVS is robust for quantifying freshwater habitat classes and complexity and should be chosen whenever possible over conventional methods (e.g., chain-and-tape) because of the repeatability, scalability and multi-dimensional nature of the products. The SfM-MVS products can be used to identify high priority freshwater sectors for conservation, species occurrences and diversity studies to provide a broader indication for overall fish species diversity and provide repeatability for monitoring change over time.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: This paper presents an efficient solution, based on a wearable mobile laser system (WMLS), for the digitalization and modelling of a complex cultural heritage building. A procedural pipeline is formalized for the data acquisition, processing and generation of cartographic products over a XV century palace located in Segovia, Spain. The complexity, represented by an intricate interior space and by the presence of important structural problems, prevents the use of standard protocols such as those based on terrestrial photogrammetry or terrestrial laser scanning, making the WMLS the most suitable and powerful solution for the design of restoration actions. The results obtained corroborate with the robustness and accuracy of the digitalization strategy, allowing for the generation of 3D models and 2D cartographic products with the required level of quality and time needed to digitalize the area by a terrestrial laser scanner.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-15
    Description: Plot-based sampling with ground measurements or photography is typically used to establish and maintain National Forest Inventories (NFI). The re-measurement phase of the Canadian NFI is an opportunity to develop novel methods for the estimation of forest attributes such as stand height, crown closure, volume, and aboveground biomass (AGB) from satellite, rather than, airborne imagery. Based on panchromatic Very High Spatial Resolution (VHSR) images and Light Detection and Ranging (LiDAR) data acquired in the Yukon Territory, Canada, we propose an approach for boreal forest stand attribute characterization. Stand and tree objects are delineated, followed by modeling of stand height, volume, and AGB using metrics derived from the stand and tree crown objects. The calibration and validation of the models are based on co-located LiDAR-derived estimates. A k-nearest neighbor approach provided the best accuracy for stand height estimation (R2 = 0.76, RMSE = 1.95 m). Linear regression models were the most efficient for estimating stand volume (R2 = 0.94, RMSE = 9.6 m3/ha) and AGB (R2 = 0.92, RMSE = 22.2 t/ha). This study was implemented for one Canadian ecozone and demonstrated the capacity of a methodology to produce forest inventory attributes with acceptable accuracies offering potential to be applied to other boreal regions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-26
    Description: In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer) data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain), where ALOS (Advanced Land Observing Satellite) images have been processed through a Persistent Scatterer Interferometry (PSI) technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, but even moving, potentially referred to unmapped landslides or triggered by other kinds of geomorphological processes. In the Tramuntana range, 42 landslides were identified as active, four as being potential to produce moderate damage, intersecting the road Ma-10, which represents the most important road of the island and, thus, the main element at risk. In order to attest the reliability of measured displacements to represent landslide dynamics, a confidence degree evaluation is proposed. In this test site, seven landslides exhibit a high confidence degree, medium for 93 of them, and low for 51. A low confidence degree was also attributed to 615 detected active clusters with a potential to cause moderate damage, as their mechanism of the triggering cause is unknown. From this total amount, 18 of them intersect the Ma-10, representing further potentially hazardous areas. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities, being exportable to other radar data and different geomorphological settings.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-17
    Description: Freshwater ecosystems are among the most threatened on Earth, facing environmental and anthropogenic pressures often surpassing their terrestrial counterparts. Land use and land cover change (LUCC) such as degradation and fragmentation of the terrestrial landscape negatively impacts aquatic ecosystems. Satellite imagery allows for an impartial assessment of the past to determine habitat alterations. It can also be used as a forecasting tool in the development of species conservation strategies through models based on ecological factors extracted from imagery. In this study, we analyze Landsat time sequences (1984–2015) to quantify LUCC around three freshwater ecosystems with endemic cichlids in Tanzania. In addition, we examine population growth, agricultural expansion, and climate change as stressors that impact the habitats. We found that the natural vegetation cover surrounding Lake Chala decreased from 15.5% (1984) to 3.5% (2015). At Chemka Springs, we observed a decrease from 7.4% to 3.5% over the same period. While Lake Natron had minimal LUCC, severe climate change impacts have been forecasted for the region. Subsurface water data from the Gravity Recovery and Climate Experiment (GRACE) satellite observations further show a decrease in water resources for the study areas, which could be exacerbated by increased need from a growing population and an increase in agricultural land use.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-18
    Description: Remote Sensing, Vol. 9, Pages 1059: Biodiversity Monitoring in Changing Tropical Forests: A Review of Approaches and New Opportunities Remote Sensing doi: 10.3390/rs9101059 Authors: Kalkidan Mulatu Brice Mora Lammert Kooistra Martin Herold Tropical forests host at least two-thirds of the world’s flora and fauna diversity and store 25% of the terrestrial above and belowground carbon. However, biodiversity decline due to deforestation and forest degradation of tropical forest is increasing at an alarming rate. Biodiversity dynamics due to natural and anthropogenic disturbances are mainly monitored using established field survey approaches. However, such approaches appear to fall short at addressing complex disturbance factors and responses. We argue that the integration of state-of-the-art monitoring approaches can improve the detection of subtle biodiversity disturbances and responses in changing tropical forests, which are often data-poor. We assess the state-of-the-art technologies used to monitor biodiversity dynamics of changing tropical forests, and how their potential integration can increase the detail and accuracy of biodiversity monitoring. Moreover, the relevance of these biodiversity monitoring techniques in support of the UNCBD Aichi targets was explored using the Essential Biodiversity Variables (EBVs) as a framework. Our review indicates that although established field surveys were generally the dominant monitoring systems employed, the temporal trend of monitoring approaches indicates the increasing application of remote sensing and in -situ sensors in detecting disturbances related to agricultural activities, logging, hunting and infrastructure. The relevance of new technologies (i.e., remote sensing, in situ sensors, and DNA barcoding) in operationalising EBVs (especially towards the ecosystem structure, ecosystem function, and species population classes) and the Aichi targets has been assessed. Remote sensing application is limited for EBV classes such as genetic composition and species traits but was found most suitable for ecosystem structure class. The complementarity of remote sensing and emerging technologies were shown in relation to EBV candidates such as species distribution, net primary productivity, and habitat structure. We also developed a framework based on the primary biodiversity attributes, which indicated the potential of integration between monitoring approaches. In situ sensors are suitable to help measure biodiversity composition, while approaches based on remote sensing are powerful for addressing structural and functional biodiversity attributes. We conclude that, synergy between the recent biodiversity monitoring approaches is important and possible. However, testing the suitability of monitoring methods across scales, integrating heterogeneous monitoring technologies, setting up metadata standards, and making interpolation and/or extrapolation from observation at different scales is still required to design a robust biodiversity monitoring system that can contribute to effective conservation measures.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-30
    Description: Remote Sensing, Vol. 10, Pages 687: Estimating Peatland Water Table Depth and Net Ecosystem Exchange: A Comparison between Satellite and Airborne Imagery Remote Sensing doi: 10.3390/rs10050687 Authors: Margaret Kalacska J. Pablo Arroyo-Mora Raymond J. Soffer Nigel T. Roulet Tim R. Moore Elyn Humphreys George Leblanc Oliver Lucanus Deep Inamdar Peatlands play a fundamental role in climate regulation through their long-term accumulation of atmospheric carbon. Despite their resilience, peatlands are vulnerable to climate change. Remote sensing offers the opportunity to better understand these ecosystems at large spatial scales through time. In this study, we estimated water table depth from a 6-year time sequence of airborne shortwave infrared (SWIR) hyperspectral imagery. We found that the narrowband index NDWI1240 is a strong predictor of water table position. However, we illustrate the importance of considering peatland anisotropy on SWIR imagery from the summer months when the vascular plants are in full foliage, as not all illumination conditions are suitable for retrieving water table position. We also model net ecosystem exchange (NEE) from 10 years of Landsat TM5 imagery and from 4 years of Landsat OLI 8 imagery. Our results show the transferability of the model between imagery from sensors with similar spectral and radiometric properties such as Landsat 8 and Sentinel-2. NEE modeled from airborne hyperspectral imagery more closely correlated to eddy covariance tower measurements than did models based on satellite images. With fine spectral, spatial and radiometric resolutions, new generation satellite imagery and airborne hyperspectral imagery allow for monitoring the response of peatlands to both allogenic and autogenic factors.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...