ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (4)
  • Remote Sensing  (3)
  • 124526
Sammlung
  • Artikel  (4)
Erscheinungszeitraum
Zeitschrift
  • 1
    Publikationsdatum: 2016-05-05
    Beschreibung: Earth Observation (EO) data are critical for many Geographic Information System (GIS)-based decision support systems to provide factual information. However, it is challenging for GIS to understand traditional EO data formats (e.g., Hierarchical Data Format (HDF)) given the different contents and formats in the two domains. To address this gap between EO data and GIS, the barriers and strategies of integrating various types of EO data with GIS are explored, especially with the popular Geospatial Data Abstraction Library (GDAL) that is used by many GISs to access EO data. The research investigates four key technical aspects: (i) designing a generic plug-in framework for consuming different types of EO data; (ii) implementing the framework to fix the errors in GIS when using GDAL to understand EO data; and (iii) developing extension for commercial and open source GIS (i.e., ArcGIS and QGIS) to demonstrate the usability of the proposed framework and its implementation in GDAL. A series of EO data products collected from NASA’s Atmospheric Scientific Data Center (ASDC) are used in the tests and the results prove the proposed framework is efficient to solve different problems in interpreting EO data without compromising their original content.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-06-29
    Beschreibung: Ecosystem-scale water-use efficiency (WUE), defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET), is an important indicator of coupled carbon-water cycles. Relationships between WUE and environmental factors have been widely investigated, but the variations in WUE in response to biotic factors remain little understood. Here, we argue that phenology plays an important role in the regulation of WUE by analyzing seasonal WUE responses to variability of photosynthetic phenological factors in terrestrial ecosystems of the Northern Hemisphere using MODIS satellite observations during 2000–2014. Our results show that WUE, during spring and autumn is widely and significantly correlated to the start (SOS) and end (EOS) of growing season, respectively, after controlling for environmental factors (including temperature, precipitation, radiation and atmospheric carbon dioxide concentration). The main patterns of WUE response to phenology suggest that an increase in spring (or autumn) WUE with an earlier SOS (or later EOS) are mainly because the increase in GPP is relatively large in magnitude compared to that of ET, or due to an increase in GPP accompanied by a decrease in ET, resulting from an advanced SOS (or a delayed EOS). Our results and conclusions are helpful to complement our knowledge of the biological regulatory mechanisms underlying coupled carbon-water cycles.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-05-31
    Beschreibung: The water index (WI) is designed to highlight inland water bodies in remotely sensed imagery. The application of WI for water body mapping is mainly based on the thresholding method. However, there are three primary difficulties with this method: (1) inefficient identification of mixed water pixels; (2) confusion of water bodies with background noise; and (3) variation in the threshold values according to the location and time of image acquisitions. Considering that mixed water pixels usually appear in narrow rivers or shallow water at the edge of lakes or wide rivers, an automated method is proposed for extracting rivers and lakes by combining the WI with digital image processing techniques to address the above issues. The data sources are the Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) images for three representative areas in China. The results were compared with those from existing thresholding methods. The robustness of the new method in combination with different WIs is also assessed. Several metrics, which include the Kappa coefficient, omission and commission errors, edge position accuracy and completeness, were calculated to assess the method’s performance. The new method generally outperformed the thresholding methods, although the degree of improvement varied among WIs. The advantages and limitations of the proposed method are also discussed.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2018-12-26
    Beschreibung: Assessing changes in rice cropping systems is essential for ensuring food security, greenhouse gas emissions, and sustainable water management. However, due to the insufficient availability of images with moderate to high spatial resolution, caused by frequent cloud cover and coarse temporal resolution, high-resolution maps of rice cropping systems at a large scale are relatively limited, especially in tropical and subtropical regions. This study combined the difference of Normalized Difference Vegetation Index (dNDVI) method and the Normalized Difference Vegetation Index (NDVI) threshold method to monitor changes in rice cropping systems of Southern China using Landsat images, based on the phenological differences between different rice cropping systems. From 1990–2015, the sown area of double cropping rice (DCR) in Southern China decreased by 61054.5 km2, the sown area of single cropping rice (SCR) increased by 20,110.7 km2, the index of multiple cropping decreased from 148.3% to 129.3%, and the proportion of DCR decreased by 20%. The rice cropping systems in Southern China showed a “double rice shrinking and single rice expanding” change pattern from north to south, and the most dramatic changes occurred in the Middle-Lower Yangtze Plain. This study provided an efficient strategy that can be applied to moderate to high resolution images with deficient data availability, and the resulting maps can be used as data support to adjust agricultural structures, formulate food security strategies, and compile a greenhouse gas emission inventory.
    Digitale ISSN: 2072-4292
    Thema: Architektur, Bauingenieurwesen, Vermessung , Geographie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...