ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Copernicus  (2)
  • American Chemical Society (ACS)
  • Atmospheric Measurement Techniques Discussions. 2015; 8(10): 11285-11321. Published 2015 Oct 30. doi: 10.5194/amtd-8-11285-2015.  (1)
  • Atmospheric Measurement Techniques Discussions. 2016; 1-27. Published 2016 Aug 03. doi: 10.5194/amt-2016-205. [early online release]  (1)
  • 123569
  • 1
    Publication Date: 2015-10-30
    Description: A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-03
    Description: Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and sub-saturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the microphysical properties of small quasi-spherical ice particles in deep convection simulations and small hexagonal ice particles typical for in situ cirrus. Ice crystal asphericity and a degree of submicron complexity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and images captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering-Intensity-Measurements-for-the-Optical-detectioN-of-icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice, in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have shown a rather low sensitivity to the crystal complexity for small ice cloud particles that were grown under typical atmospheric conditions. Bulk averaged path depolarisation measurements of these clouds showed higher correlation to single particle measurements at high concentration and small diameters of cloud particles. These results have implications for the interpretation of atmospheric measurements and parametrisations for modelling, particularly for low particle number concentration clouds. This ensemble of optical instruments, using both averaged path and single particle detection presented here, in conjugation with the CLOUD chamber, reveals the possible discrepancies in comparisons of airborne and remote sensing measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...