ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Astronomy and Astrophysics. 2020; 634: A72. Published 2020 Feb 01. doi: 10.1051/0004-6361/201936305.  (1)
  • Astronomy and Astrophysics. 2020; 641: A127. Published 2020 Sep 01. doi: 10.1051/0004-6361/201936930.  (1)
  • 104486
Collection
  • Articles  (2)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2020-02-01
    Description: Context. Deriving the metallicity, [Fe/H], in low-resolution spectra of carbon-enhanced metal-poor (CEMP) stars is a tedious task that, owing to the large number of line blends, often leads to uncertainties on [Fe/H] exceeding 0.25 dex. The CEMP stars increase in number with decreasing [Fe/H] and some of these are known to be bona fide second generation halo stars. Hence, knowing their [Fe/H] is important for tracing the formation and chemical evolution of the Galaxy. Aims. Here, we aim to improve the [Fe/H] measurements in low-resolution spectra by avoiding issues related to blends. In turn, we improve our chemical tagging in such spectra at low metallicities. Methods. We developed an empirical way of deriving [Fe/H] in CEMP (and C-normal) stars that relates the equivalent width (EW) of strong lines, which remain detectable in lower resolution, metal-poor spectra, such as X-shooter spectra to [Fe/H]. Results. The best [Fe/H] tracers are found to be Cr I and Ni I, which both show strong transitions in spectral regions that are free of molecular bands (between ~5200−6800Å, a region accessible to most surveys). We derive different relations for dwarfs and giants. The relations are valid in the ranges ~ − 3 〈 [Fe/H] 〈 −0.5 and 10 〈 EW 〈 800 m Å (Cr) or [Fe/H] 〉 −3.2 and EW 〉 5 m Å (Ni), depending on the trace element and line as well as the stellar evolutionary stage. Conclusions. The empirical relations are valid for both CEMP and C-normal stars and have been proven to be accurate tracers in a sample of ~400 stars (mainly giants). The metallicities are accurate to within ± ~0.2 dex depending on the sample and resolution, and the empirical relations are robust to within 0.05–0.1 dex. Our relations will improve the metallicity determination in future surveys, which will encounter a large number of CEMP stars, and will greatly speed up the process of determining [Fe/H] as the EWs only need to be measured in two or three lines in relatively clean regions compared to dealing with numerous blended Fe lines.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-01
    Description: Context. We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving 13 classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total, this study includes 380 stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. Aims. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of α-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. Methods. We used data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these 13 classical dSph and UFD galaxies. We automatized the step of obtaining stellar parameters, but ran a full spectrum synthesis (1D, local thermal equilibrium) to derive all abundances except for iron to which we applied nonlocal thermodynamic equilibrium corrections where possible. Results. The homogenized set of abundances yielded the unique possibility of deriving a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of α-elements. This reveals a universal relation of these systems across a large range in mass. Finally, we show that between stellar masses of 2.1 × 107 M⊙ and 2.9 × 105 M⊙, there is no dependence of the production of heavy r-process elements on the stellar mass of the galaxy. Conclusions. Placing all abundances consistently on the same scale is crucial to answering questions about the chemical history of galaxies. By homogeneously analyzing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxy’s stellar mass. Moreover, the r-process material correlates with the α-elements indicating some coproduction of these, which in turn would point toward rare core-collapse supernovae rather than binary neutron star mergers as a host for the r-process at low [Fe/H] in the investigated dSph systems.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...