ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
Collection
Language
  • English  (2)
Years
  • 1
    Publication Date: 2020-02-12
    Description: Application of the ambient noise surface wave tomography method (ANT) for determination of the upper-mantle structure requires data on long-periodic noise (T 〉 40 s). The ANT technique implies that noise sources are distributed almost uniformly over the surface. This is practically true for short-periodic noise, however, it is not so in the case of long periods. In this paper we show that the main contribution to noise at long periods is caused by signals from earthquakes. In some cases, they may strongly distort noise cross-correlation. This leads to an incorrect determination of surface wave velocity dispersion curves. To minimize such a distortion we propose two means: (1) to use records of noise for the periods when there is no clustering of earthquakes, such as aftershocks of strong events; (2) to stack cross-correlation functions for a period of at least three years in order to achieve sufficient uniformity of earthquake locations. Validity of this approach is demonstrated by ANT results for Europe. Tomographic reconstruction of Rayleigh wave group velocities for 10–100 s measured along interstation paths was carried out in a central part of Western Europe where resolving power of the data was the highest. Locally averaged dispersion curves were inverted to vertical S-wave velocity sections in this area. The results correspond closely to known features of the structure of the region, namely: strong difference of the crust and upper-mantle structure at the opposite sides from the Tornquist–Teisseyre Line down to ∼ 250 km, penetration of high-velocity material of East European Platform lithosphere under Carpathians, as well as penetration of low-velocity asthenospheric layer from the Carpathian region towards the northeast.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The 3-D structure of the lithosphere beneath the Aegean Sea is investigated through surface wave dispersion analysis. Rayleigh and Love waves recorded by 12 broad-band stations installed for a duration of 6 months in the Aegean region are processed through array analysis and Wiener filtering. Data from three GEOFON stations in the area of Crete were also used. The resulting two-station phase velocities are used to determine lateral variations of Rayleigh wave phase velocities between periods of 20 and 100 s by a 2-D ray tomography method. The obtained phase velocities are inverted to calculate variation of S-wave velocity with depth using a combination of linearized inversion and a Monte Carlo based non-linear inversion. The absolute S-wave velocity is resolved to a depth of approximately 200 km. A high-velocity anomaly of 3 per cent is observed in the southern Aegean attributed to the Hellenic subduction. In the northern part of the Aegean, in the prolongation of the North Anatolian Fault which is influenced by strong extensional movements, we found low absolute S-wave velocities at 50-100 km depth. This supports a model of a distributed deformation of the upper mantle in the area. Separate Rayleigh and Love wave phase velocity inversions along common profiles reveal a strong Love-Rayleigh discrepancy in the northern Aegean down to at least 150 km depth, i.e. most probably including the top of the asthenosphere.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...