ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (64)
  • 1
    Publication Date: 2022-08-25
    Description: Multi-agent systems can solve scientific issues related to complex systems that are difficult or impossible for a single agent to solve through mutual collaboration and cooperation optimization. In a multi-agent system, agents with a certain degree of autonomy generate complex interactions due to the correlation and coordination, which is manifested as cooperative/competitive behavior. This survey focuses on multi-agent cooperative optimization and cooperative/non-cooperative games. Starting from cooperative optimization, the studies on distributed optimization and federated optimization are summarized. The survey mainly focuses on distributed online optimization and its application in privacy protection, and overviews federated optimization from the perspective of privacy protection mechanisms. Then, cooperative games and non-cooperative games are introduced to expand the cooperative optimization problems from two aspects of minimizing global costs and minimizing individual costs, respectively. Multi-agent cooperative and non-cooperative behaviors are modeled by games from both static and dynamic aspects, according to whether each player can make decisions based on the information of other players. Finally, future directions for cooperative optimization, cooperative/non-cooperative games, and their applications are discussed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-05-22
    Description: Atmospheric black carbon (BC) aerosol, as the most significant light absorbing aerosol component, has been a long-lasting uncertain component in environmental and climate studies. Taking the recent IPCC report as an example, the estimated effective radiative forcing due to BC emission is between -0.28 and 0.42 W m〈sup〉-2〈/sup〉. However, current global climate models struggle to accurately represent detailed aerosol microphysical and mixing properties due to computational limitations, which would certainly result in biases on their optical properties and radiative effects. One of the most unsettled problems is that the modeled BC absorption enhancement is much larger than in-situ observations, and this could be caused by the poor representation of BC properties in GCMs. Meanwhile, various observations have been provided some fundamental BC properties in ambient atmospheres, e.g., their typical size distributions and mixing properties. This study implements much reasonable BC properties into the CESM-CAM6 to better represent their optical properties, and intends to improve our understanding on their optical and radiative properties. Our results indicate that the new model shows improved agreement with in-situ measurements of BC absorption enhancement, and currently may overestimate BC radiative effectives by over 20%. Additionally, our new scheme may be easily applied in GCMs with similar aerosol module.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-06-08
    Description: Black carbon (BC) plays an important role in the climate system due to its strong warming effect, yet the magnitude of this effect is highly uncertain due to the complex mixing state of aerosols. Here we build a unified theoretical framework to describe BC’s mixing states, linking dynamic processes to BC coating thickness distribution, and show its self-similarity for sites in diverse environments. A new mixing state module is established based on this finding and successfully applied in global and regional models, which increases the accuracy of aerosol climate effect estimations.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-27
    Description: Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p 〈 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  IEEE Transactions on Neural Networks and Learning Systems
    Publication Date: 2023-12-13
    Description: Autonomous systems possess the features of inferring their own state, understanding their surroundings, and performing autonomous navigation. With the applications of learning systems, like deep learning and reinforcement learning, the visual-based self-state estimation, environment perception, and navigation capabilities of autonomous systems have been efficiently addressed, and many new learning-based algorithms have surfaced with respect to autonomous visual perception and navigation. In this review, we focus on the applications of learning-based monocular approaches in ego-motion perception, environment perception, and navigation in autonomous systems, which is different from previous reviews that discussed traditional methods. First, we delineate the shortcomings of existing classical visual simultaneous localization and mapping (vSLAM) solutions, which demonstrate the necessity to integrate deep learning techniques. Second, we review the visual-based environmental perception and understanding methods based on deep learning, including deep learning-based monocular depth estimation, monocular ego-motion prediction, image enhancement, object detection, semantic segmentation, and their combinations with traditional vSLAM frameworks. Then, we focus on the visual navigation based on learning systems, mainly including reinforcement learning and deep reinforcement learning. Finally, we examine several challenges and promising directions discussed and concluded in related research of learning systems in the era of computer science and robotics.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-11
    Description: This paper describes the rationale and the protocol of the first component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a, http://www.isimip.org, last access: 2 November 2023) and the associated set of climate-related and direct human forcing data (CRF and DHF, respectively). The observation-based climate-related forcings for the first time include high-resolution observational climate forcings derived by orographic downscaling, monthly to hourly coastal water levels, and wind fields associated with historical tropical cyclones. The DHFs include land use patterns, population densities, information about water and agricultural management, and fishing intensities. The ISIMIP3a impact model simulations driven by these observation-based climate-related and direct human forcings are designed to test to what degree the impact models can explain observed changes in natural and human systems. In a second set of ISIMIP3a experiments the participating impact models are forced by the same DHFs but a counterfactual set of atmospheric forcings and coastal water levels where observed trends have been removed. These experiments are designed to allow for the attribution of observed changes in natural, human, and managed systems to climate change, rising CH4 and CO2 concentrations, and sea level rise according to the definition of the Working Group II contribution to the IPCC AR6.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-18
    Description: The 13C isotopic ratio of methane, δ13C of CH4, provides additional constraints on the CH4 budget to complement the constraints from CH4 observations. The interpretation of δ13C observations is complicated, however, by uncertainties in the methane sink. The reaction of CH4 with Cl is highly fractionating, increasing the relative abundance of 13CH4, but there is currently no consensus on the strength of the tropospheric Cl sink. Global model simulations of halogen chemistry differ strongly from one another in terms of both the magnitude of tropospheric Cl and its geographic distribution. This study explores the impact of the intermodel diversity in Cl fields on the simulated δ13C of CH4. We use a set of GEOS global model simulations with different predicted Cl fields to test the sensitivity of the δ13C of CH4 to the diversity of Cl output from chemical transport models. We find that δ13C is highly sensitive to both the amount and geographic distribution of Cl. Simulations with Cl providing 0.28 % or 0.66 % of the total CH4 loss bracket the δ13C observations for a fixed set of emissions. Thus, even when Cl provides only a small fraction of the total CH4 loss and has a small impact on total CH4, it provides a strong lever on δ13C. Consequently, it is possible to achieve a good representation of total CH4 using widely different Cl concentrations, but the partitioning of the CH4 loss between the OH and Cl reactions leads to strong differences in isotopic composition depending on which model's Cl field is used. Comparing multiple simulations, we find that altering the tropospheric Cl field leads to approximately a 0.5 ‰ increase in δ13CH4 for each percent increase in how much CH4 is oxidized by Cl. The geographic distribution and seasonal cycle of Cl also impacts the hemispheric gradient and seasonal cycle of δ13C. The large effect of Cl on δ13C compared to total CH4 broadens the range of CH4 source mixtures that can be reconciled with δ13C observations. Stronger constraints on tropospheric Cl are necessary to improve estimates of CH4 sources from δ13C observations.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-18
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-18
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-07-18
    Description: Emission inventories are a critical basis for air quality and climate modeling, as well as policy decisions. Non-methane volatile organic compounds (NMVOCs) are key precursor compounds in ozone and secondary organic aerosol formation. Accurately representing NMVOCs in emission inventories is crucial for understanding atmospheric chemistry, the impact of policy measures, and climate projections. Improving NMVOC representation in emission inventories is fraught with challenges, ranging from the lack of (long-term) NMVOC measurements, limited efforts in updating emission factors, to the diversity of NMVOC species reactivity. Here we take an initial step to evaluate the representation of urban NMVOC speciation in an emission inventory (EDGARv4.3.2 and EDGARv6.1) at the global level. To compare the urban measurements of NMVOCs to the emission inventory estimates, ratios of individual NMVOCs to acetylene are used. Owing to limitations in measurement data and grouping of NMVOCs in emission inventories, the comparison includes only a limited number of alkanes, alkenes, and aromatics. Results show little to no agreement between the ratios in the observations and those in the global emission inventory for the species compared (r2 0.01–0.20). This could be related to incorrect speciation profiles and/or spatial allocation of NMVOCs to urban areas. Regional emission inventories show better agreement among the ratios (r2 0.43–0.70). The inclusion of oxygenated species in NMVOC measurements, as well as greater global coverage of measurements could improve representation of NMVOC species in emission inventories, and a mosaic of regional inventories may be a better approach.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...