ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G3-19-92415
    Type of Medium: Dissertations
    Pages: VIII, 154, xv Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Table of contents Abstract Zusammenfassung 1 Motivation 2 Introduction 2.1 Arctic climate changes and their impacts on Coastal processes 2.2 Shoreline retreat along Arctic coasts 2.3 Impacts of Coastal erosion 2.3.1 Material fluxes 2.3.2 Retrogressive thaw slumps 2.3.3 Socio-economic impacts 2.4 Objectives 2.5 Study area 2.6 Thesis structure 2.7 Authors’ contributions 3 Variability in rates of Coastal change along the Yukon coast, 1951 to 2015 3.1 Introduction 3.2 Study Area 3.3 Data and Methods 3.3.1 Remote sensing data 3.3.2 Field survey data 3.3.3 Classification of shoreline 3.3.4 Transect-wise analyses of shoreline movements through time 3.4 Results 3.4.1 Temporal variations in shoreline change rates 3.4.2 Alongshore rates of change 3.4.3 Shoreline dynamics along field sites 3.4.4 Dynamics of lagoons, barrier Islands and spits (gravel features) 3.4.5 Yukon Territory land loss 3.5 Discussion 3.5.1 Temporal variations in shoreline change rates 3.5.2 Alongshore rates of change 3.5.3 Dynamics of lagoons, barrier Islands, and spits (gravel features) 3.5.4 Expected shoreline changes as a consequence of future climate warming 3.6 Conclusions Context 4 Coastal erosion of permafrost Solls along the Yukon Coastal Plain and Kuxes oforganic carbon to the Canadian Beaufort Sea 4.1 Introduction 4.2 Study Area 4.3 Methods 4.3.1 Sample collection and laboratory analyses 4.3.2 Soll organic carbon determinations 4.3.3 Flux of organic soil carbon and Sediments 4.3.4 Fate of the eroded soil organic carbon 4.4 Results 4.4.1 Ground lce 4.4.2 Organic carbon contents 4.4.3 Material fluxes 4.5 Discussion 4.5.1 Ground lce 4.5.2 Organic carbon contents 4.5.3 Material fluxes 4.5.4 Organic carbon in nearshore Sediments 4.6 Conclusion Context 5 Terrain Controls on the occurrence of Coastal retrogressive thaw slumpsalong the Yukon Coast, Canada 5.1 Introduction 5.2 Study Area 5.3 Methods 5.3.1 Mapping of RTSs and landform Classification 5.3.2 Environmental variables 5.3.3 Univariate regression trees 5.4 Results 5.4.1 Characteristics of RTS along the coast 5.4.2 Density and areal coverage od RTSs along the Yukon Coast 5.5 Discussion 5.5.1 Characteristics and distribution of RTSs along the Yukon Coast 5.5.2 Terrain factors explaining RTS occurrence 5.5.3 Coastal processes 5.6 Conclusions Context 6 Impacts of past and fiiture Coastal changes on the Yukon coast - threats forcultural sites, infrastructure and travel routes 6.1 Introduction 6.2 Study Area 6.3 Methods 6.3.1 Data for shoreline projections 6.3.2 Shoreline projection for the conservative scenario (S1) 6.3.3 Shoreline Projection for the dynamic scenario (S2) 6.3.4 Positioning and characterizing of cultural sites 6.3.5 Calculation of losses under the S1 and S2 scenarios 6.3.6 Estimation of future dynamics in very dynamic areas 6.4 Results and discussion 6.4.1 Past and future shoreline change rates 6.4.2 Cultural sites 6.4.3 Infrastructure and travel routes 6.5 Conclusions 7 Discussion 7.1 The importance of understanding climatic drivers of Coastal changes 7.2 The influence of shoreline change rates on retrogressive thaw slump activity 7.3 On the calculation of carbon fluxes from Coastal erosion along the Yukon coast 7.4 Impacts of present and future Coastal erosion on the natural and human environment 7.5 Synthesis 8 Summary and Conclusions Bibliography Supporting Material Data Set ds01 Table S1 Table S3 Abbreviations and Nomendature Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: PIK N 456-19-92699
    Type of Medium: Dissertations
    Pages: 1 Band (verschiedene Seitenzählungen) , Illustrationen, Diagramme, Karten
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: M 20.93497
    Description / Table of Contents: The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of 〉4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. [...]
    Type of Medium: Dissertations
    Pages: 122 Seiten , Illustrationen, Diagramme
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: M 20.93503
    Description / Table of Contents: Steep mountain channels are an important component of the fluvial system. On geological timescales, they shape mountain belts and counteract tectonic uplift by erosion. Their channels are strongly coupled to hillslopes and they are often the main source of sediment transported downstream to low-gradient rivers and to alluvial fans, where commonly settlements in mountainous areas are located. Hence, mountain streams are the cause for one of the main natural hazards in these regions. Due to climate change and a pronounced populating of mountainous regions the attention given to this threat is even growing. Although quantitative studies on sediment transport have significantly advanced our knowledge on measuring and calibration techniques we still lack studies of the processes within mountain catchments. Studies examining the mechanisms of energy and mass exchange on small temporal and spatial scales in steep streams remain sparse in comparison to low-gradient alluvial channels. In the beginning of this doctoral project, a vast ...
    Type of Medium: Dissertations
    Pages: 180 Seiten , Illustrationen, Karten, Diagramme
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: M 20.93507
    Type of Medium: Dissertations
    Pages: v, 153 Seiten , Illustrationen, Diagramme
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI G5-20-93987
    Type of Medium: Dissertations
    Pages: XVI, 91 Seiten , Illustrationen
    Language: English
    Note: Dissertation, Universität Potsdam, 2015 , Table of Contents Acknowledgements Abstract Zusammenfassung List of figures and tables List of Abbreviations 1. Introduction 1.1. Preface and thesis organization 1.2. Research motivation and relevance 1.3. Background knowledge 1.3.1. Terrigenous sediments 1.3.2. Hala Lake 1.3.3. The North Pacific 1.3.4. The Bering Sea 1.4. Aims and objectives 1.5. Methodological overview 1.5.1. Fieldwork 1.5.2. Age-depth modeling 1.5.3. Key proxies: grain size and clay minerals 1.5.4. Supplementary methodology: remote sensing, seismic sub-bottom profiling and geochemistry 1.6. Overview and status of the manuscripts 2 Manuscript 1 : Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China Abstract 2.1. Introduction 2.2. Regional setting 2.3. Materials and methods 2.3.1. Remote sensing of the study area 2.3.2. Fieldwork 2.3.3. Radiocarbon dating of recovered sediment cores 2.3.4. Laboratory work 2.3.5. Statistical data treatment 2.4. Results and interpretation 2.4.1. Remote sensing on the spatial heterogeneity of lake ice and length of lake ice-free days 2.4.2. Seismic sub-bottom profiling 2.4.3. Age and sedimentary characteristics of the sediment core record 2.4.4. Grain-size modeling results 2.5. Discussion 2.5.1. Last Glacial Maximum (~24-17 cal. ka BP) 2.5.2. Time-equivalent of Heinrich Event 1 (~17-15.4 cal. ka BP) 2.5.3. Time-equivalent of Bolling-Allerod (~15.4-13 cal. ka BP) 2.5.4. Time-equivalent of Younger Dryas (~12.9-11.6 cal. ka BP) 2.5.5. Holocene (~11.6 cal. ka BP to present) 2.6. Conclusions Acknowledgments 3 Manuscript 2: Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and the Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions Abstract 3.1. Introduction 3.2. Study area and regional setting 3.3. Material and methods 3.4. Results 3.4.1. Grain size distribution 3.4.2 Bulk mineralogy 3.4.3. Mineralogy of the clay fraction 3.5. Discussion 3.5.1. Sedimentary processes 3.5.2. Sediment provenance 3.5.3 Implications for palaeoenvironmental studies 3.6. Conclusions Acknowledgements 4 Manuscript 3: Provenance and dispersal of terrigenous sediments in the Bering Sea slope: Implications for late glacial land-ocean linkages Abstract 4.1. Introduction 4.2. Regional setting 4.3. Material and methods 4.4. Results and interpretation 4.4.1. Lithology and stratigraphy 4.4.2. Grain size distribution 4.4.3. Clay mineralogy 4.5. Discussion 4.5.1. Processes of terrigenous sediment supply 4.5.2. Detrital sediment sources 4.5.3. Detrital sediment supply and its relation to regionalpalaeoenvironmental changes 4.5.3.1. Time interval 32-15.7 ka BP: Background sedimentation at low sea level 4.5.3.2. Time interval 15.7-14.5 ka BP: Regional Meltwater Pulse 4.5.3.3. Time interval 14.5-12.9 ka BP: First biological bloom event 4.5.3.4. Time interval 12.9-6 ka BP: Cooling episode, rejuvenation of biological productivity and onset ofmodern conditions 4.5.4. Palaeoenvironmental implications 4.6. Conclusions Acknowledgements 5 Synthesis 5.1. The North Hemisphere synchronization of millennial climate oscillations during the last Glacial: teleconnections from Westerlies and thermohaline Circulation 5.2. The regional asynchronization of millennial climate oscillations during the last Glacial: discrepancy and "recording capacity" 5.3. Secondary connections between global climate transmissions: winter cyclone in the North Pacific 5.4. Future perspectives 6 References 7 Appendix Extended results: Core SO202-39-3 from the mid-latitude North Pacific 7.1. Material 7.2. Results 7.3. Oscillation of eolian sediment transport 7.4. Conclusions
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G5-20-94097
    Type of Medium: Dissertations
    Pages: vi, 127 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2020 , Table of contents Abstract Kurzfassung Table of contents Chapter 1: Introduction 1.1 The challenge of proxy uncertainties 1.2 Aims and approaches 1.3 Thesis outline and author's contributions Chapter 2: Comparing methods for analysing time scale dependent correlations in irregularly sampled time series data 2.1 Abstract 2.2 Introduction 2.3 Methods 2.3.1 Time scale dependency 2.3.2 Irregularity 2.3.3 Surrogate data 2.3.3.1 Construction of surrogate signals 2.3.3.2 Construction of irregular sampling 2.3.4 Evaluation of the estimation methods 2.4 Results 2.4.1 Correlation of red signal - white noise time series 2.4.2 Correlation of white signal - white noise time series 2.5 Discussion 2.5.1 Effect of irregularity and non-simultaneousness in sampling 2.5.2 Choosing the best method 2.5.2.1 Handling irregularity 2.5.2.2 Accounting for time scale dependency 2.5.3 Example application to observed proxy records 2.6 Conclusion 2.7 Computer code availability 2.8 Acknowledgements 2.9 Appendix 2-A. Significance test for time scale dependent correlation estimates Chapter 3: Empirical estimate of the signal content of Holocene temperature proxy records 3.1 Abstract 3.2 Introduction 3.3 Data 3.3,1 Proxy records 3.3.2 Climate model simulations 3.4 Method 3.4.1 Approach and assumptions 3.4.2 Spatial correlation structure of model vs. reanalysis data 3.4.3 Processing steps 3.4.3.1 Estimation of the spatial correlation structure 3.4.3.2 Estimation of the SNRs 3.5 Results 3.5.1 Spatial correlation structure and correlation decay length 3.5.2 SNR estimates 3.6 Discussion 3.6.1 Spatial correlation structure of model simulations 3.6.2 Finite number of proxy records 3.6.3 Proxy-specific recording of climate variables 3.6.4 Time uncertainty and non-climatic components of the proxy signal 3.6.5 Implications and future steps forward 3.7 Conclusion 3.8 Code availability 3.9 Data availability 3.10 Acknowledgements Chapter 4: Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records 4.1 Abstract 4.2 Introduction 4.3 Data 4.4 Method 4.4.1 Approach and assumptions 4.4.2 Holocene and LGM spatial correlation structure from climate model simulation 4.4.3 Effect of changes in climate variability on the predicted correlations 4.4.4 Effect of changes in time uncertainty on the predicted correlations 4.4.S Estimating the surrogate-based LGM spatial correlation and accounting for parameter uncertainty 4.5 Results 4.6 Discussion 4.6.1 Proxy-specific recording and finite number of records 4.6.2 Time uncertainty of proxy records 4.6.3 Contrary behaviour of U K'37 records 4.6.4 Spatial correlation structure and orbital trends 4.7 Conclusion 4.8 Acknowledgements 4.9 Appendix 4-A. Deriving the effect of a different signal variance on the correlation Chapter 5: Synthesis 5.1 Irregular sampling and time scale dependent correlations 5.2 Spatial correlation structure of proxy records 5.3 Consistency of spatial correlations for different climate states 5.4 Signal content of proxy records 5.5 Concluding remarks and Outlook Chapter A: Supplement of Chapter 3 - Empirical estimate of the signal content of Holocene temperature proxy records A.1 Supplementary Figures A.2 Supplementary Tables Chapter B: Supplement of Chapter 4 - Testing the consistency of Holocene and Last Glacial Maximum spatial correlations of temperature proxy records 8.1 Supplementary Figures 8.2 Supplementary Tables References Danksagung Eidesstattliche Erklärung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: PIK B 160-21-94434
    Type of Medium: Monograph available for loan
    Pages: v, 247 Seiten , Illustrationen, Diagramme
    Language: English
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI Bio-22-94840
    Description / Table of Contents: Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20% area increase in the tundra-taiga zone and 40% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems.
    Type of Medium: Dissertations
    Pages: 149 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Dissertation, Potsdam, Universität Potsdam, 2022 , Contents Abstract Zusammenfassung Contents Abbreviations Motivation 1 Introduction 1.1 Scientific background 1.2 Study region 1.3 Aims and objectives 2 Materials and methods 3.1 Section 4 - Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 3.2 Section 5 - Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing 3.3 Section 6 - Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI 4 Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 Abstract 1 Introduction 2 Materials and methods 2.1 Field data collection and processing 2.2 Landsat data, pre-processing and spectral indices processing 2.3 Redundancy analysis (RDA) and classification approaches 3 Results 3.1 General characteristics of the vegetation field data 3.2 Relating field data to Landsat spectral indices in the RDA model 3.3 Land-cover classification 3.4 Land-cover change between 2000 and 2017 4 Discussion 4.1 Dataset limitations and optimisation 4.2 Vegetation changes from 2000/2001/2002 to 2016/2017 Conclusions Acknowledgements Data availability statement References Appendix A. Detailed description of Landsat acquisitions Appendix B. MODIS NDVI time series from 2000 to 2018 Appendix C. Landsat Indices values for each analysed vegetation site Appendix D. Fuzzy c-means classification for interpretation of uncertainties for land-cover mapping Appendix E. Validation of land-cover maps Appendix F. K-means classification results Appendix G. Heterogeneity of natural landscapes and mixed pixels of satellite data Appendix H. Distribution of land-cover classes and their changes by study area 5 Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing Abstract 1 Introduction 2 Materials and methods 2.1 Study region and field surveys 2.2 Above-ground biomass upscaling and change derivation 3 Results 3.1 Vegetation composition and above-ground biomass 3.2 Upscaling above-ground biomass using GAM 3.3 Change of above-ground biomass between 2000 and 2017 in the four focus areas 4 Discussion 4.1 Recent state of above-ground biomass at the field sites 4.2 Recent state of above-ground biomass upscaled for central Chukotka 4.3 Change in above-ground biomass within the investigated 15–16 years in central Chukotka 5 Conclusions Data availability statement Author contributions Competing interests Acknowledgements References Appendix A. Sampling and above-ground biomass (AGB) calculation protocol for field data 6 Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI Abstract 1 Introduction 2 Materials and methods 2.1 Study region 2.2 LAVESI model setup, parameterisation, and validation 2.2.4 LAVESI simulation setup for this study 2.2.5 Validation of the model’s performance 3 Results 3.1 Dynamics and spatial distribution changes of tree above-ground-biomass 3.2 Spatial and temporal validation of the contemporary larch AGB 4 Discussion 4.1 Future dynamics of tree AGB at a plot level 4.2 What are the future dynamics of tree AGB at the landscape level? 5 Conclusions Data availability Acknowledgements References Appendix B. Permutation tests for tree presence versus topographical parameters Appendix C. Landsat-based, field, and simulated estimations of larch above-ground biomass (AGB). 7 Synthesis 7.1 What changes in vegetation composition have happened from 2000 to 2017 in central Chukotka? 7.2 How have the above-ground biomass (AGB) distribution and rates changed from 2000 to 2017 in central Chukotka? 7.3 What are the spatial dynamics and rates of tree AGB change in the upcoming centuries in the northern tundra-taiga from 2020 to 3000 CE on the plot level and landscape level? References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI G8-23-95167
    Description / Table of Contents: The Arctic nearshore zone plays a key role in the carbon cycle. Organic-rich sediments get eroded off permafrost affected coastlines and can be directly transferred to the nearshore zone. Permafrost in the Arctic stores a high amount of organic matter and is vulnerable to thermo-erosion, which is expected to increase due to climate change. This will likely result in higher sediment loads in nearshore waters and has the potential to alter local ecosystems by limiting light transmission into the water column, thus limiting primary production to the top-most part of it, and increasing nutrient export from coastal erosion. Greater organic matter input could result in the release of greenhouse gases to the atmosphere. Climate change also acts upon the fluvial system, leading to greater discharge to the nearshore zone. It leads to decreasing sea-ice cover as well, which will both increase wave energy and lengthen the open-water season. Yet, knowledge on these processes and the resulting impact on the nearshore zone is scarce, because access to and instrument deployment in the nearshore zone is challenging. Remote sensing can alleviate these issues in providing rapid data delivery in otherwise non-accessible areas. However, the waters in the Arctic nearshore zone are optically complex, with multiple influencing factors, such as organic rich suspended sediments, colored dissolved organic matter (cDOM), and phytoplankton. The goal of this dissertation was to use remotely sensed imagery to monitor processes related to turbidity caused by suspended sediments in the Arctic nearshore zone. In-situ measurements of water-leaving reflectance and surface water turbidity were used to calibrate a semi-empirical algorithm which relates turbidity from satellite imagery. Based on this algorithm and ancillary ocean and climate variables, the mechanisms underpinning nearshore turbidity in the Arctic were identified at a resolution not achieved before. The calibration of the Arctic Nearshore Turbidity Algorithm (ANTA) was based on in-situ measurements from the coastal and inner-shelf waters around Herschel Island Qikiqtaruk (HIQ) in the western Canadian Arctic from the summer seasons 2018 and 2019. It performed better than existing algorithms, developed for global applications, in relating turbidity from remotely sensed imagery. These existing algorithms were lacking validation data from permafrost affected waters, and were thus not able to reflect the complexity of Arctic nearshore waters. The ANTA has a higher sensitivity towards the lowest turbidity values, which is an asset for identifying sediment pathways in the nearshore zone. Its transferability to areas beyond HIQ was successfully demonstrated using turbidity measurements matching satellite image recordings from Adventfjorden, Svalbard. The ANTA is a powerful tool that provides robust turbidity estimations in a variety of Arctic nearshore environments. Drivers of nearshore turbidity in the Arctic were analyzed by combining ANTA results from the summer season 2019 from HIQ with ocean and climate variables obtained from the weather station at HIQ, the ERA5 reanalysis database, and the Mackenzie River discharge. ERA5 reanalysis data were obtained as domain averages over the Canadian Beaufort Shelf. Nearshore turbidity was linearly correlated to wind speed, significant wave height and wave period. Interestingly, nearshore turbidity was only correlated to wind speed at the shelf, but not to the in-situ measurements from the weather station at HIQ. This shows that nearshore turbidity, albeit being of limited spatial extent, gets influenced by the weather conditions multiple kilometers away, rather than in its direct vicinity. The large influence of wave energy on nearshore turbidity indicates that freshly eroded material off the coast is a major contributor to the nearshore sediment load. This contrasts results from the temperate and tropical oceans, where tides and currents are the major drivers of nearshore turbidity. The Mackenzie River discharge was not identified as a driver of nearshore turbidity in 2019, however, the analysis of 30 years of Landsat archive imagery from 1986 to 2016 suggests a direct link between the prevailing wind direction, which heavily influences the Mackenzie River plume extent, and nearshore turbidity around HIQ. This discrepancy could be caused by the abnormal discharge behavior of the Mackenzie River in 2019. This dissertation has substantially advanced the understanding of suspended sediment processes in the Arctic nearshore zone and provided new monitoring tools for future studies. The presented results will help to understand the role of the Arctic nearshore zone in the carbon cycle under a changing climate.
    Type of Medium: Dissertations
    Pages: xv, ii, 85, xvii Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2022 (kumulative Dissertation) , TABLE OF CONTENTS Abstract Zusammenfassung Allgemeinverständliche Zusammenfassung List of Figures List of Tables Funding Chapter 1 Introduction 1.1 Scientific Background 1.1.1 Arctic Climate Change 1.1.2 The Arctic Nearshore Zone 1.1.3 Ocean Color Remote Sensing 1.2 Objectives 1.3 Study Area 1.4 Methods 1.4.1 Field Sampling 1.4.2 Data Processing 1.4.3 Satellite Imagery Processing 1.5 Thesis Structure 1.6 Author Contributions Chapter 2 Long-Term High-Resolution Sediment and Sea Surface Temperature Spatial Patterns in Arctic Nearshore Waters retrived using 30-year Landsat Archive Imagery 2.1 Abstract 2.2 Introduction 2.3 Material and Methods 2.3.1 Regional Setting 2.3.2 Landsat Images Acquisition and Processing 2.3.3 Landsat Turbidity Retrieval 2.3.4 Transects in the nearshore zone 2.3.5 Wind Data 2.4 Results 2.4.1 Brightness Temperature 2.4.2 Surface Reflectance and Turbidity Mapping 2.4.3 Gradients in the nearshore zone 2.5 Discussion 2.6 Conclusion Appendix A Chapter 3 The Arctic Nearshore Turbidity Algorithm (ANTA) - A Multi Sensor Turbidity Algorithm for Arctic Nearshore Environments 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Regional setting 3.3.2 In-situ sampling 3.3.3 Optical data processing 3.3.4 Algorithm tuning 3.3.5 Satellite imagery processing 3.4 Results and Discussion 3.4.1 Turbidity and SPM 3.4.2 ANTA performance 3.4.3 Comparison with the Dogliotti et al., (2015) algorithm 3.4.4 Test and transfer of the ANTA 3.5 Conclusion Chapter 4 Drivers of Turbidity and its Seasonal Variability in the Nearshore Zone of Herschel Island Qikiqtaruk (western Canadian Arctic) 4.1 Abstract 4.2 Introduction 4.3 Methods 4.3.1 Study Area 4.3.2 Satellite Imagery 4.3.3 In-situ data 4.3.4 Reanalysis data 4.4 Results and Discussion 4.4.1 Time Series Analysis 4.4.2 Drivers of turbidity 4.5 Conclusion Chapter 5 Synthesis 5.1 Applicability of Remote Sensing Algorithms in the Arctic Nearshore Zone 5.2 Drivers of Nearshore Turbidity 5.3 Spatial Variations of Nearshore Turbidity 5.4 Challenges and Outlook List of Acronyms Bibliography Danksagung
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...