ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (13)
Collection
Language
  • English  (13)
Years
  • 1
    Publication Date: 2020-02-12
    Description: Terrestrial cosmogenic nuclide (TCN) concentrations in fluvial sediment, from which denudation rates are commonly inferred, can be affected by hillslope processes. TCN concentrations in gravel and sand may differ if localized, deep‐excavation processes (e.g. landslides, debris flows) affect the contributing catchment, whereas the TCN concentrations of sand and gravel tend to be more similar when diffusional processes like soil creep and sheetwash are dominant. To date, however, no study has systematically compared TCN concentrations in different detrital grain‐size fractions with a detailed inventory of hillslope processes from the entire catchment. Here we compare concentrations of the TCN 10Be in 20 detrital sand samples from the Quebrada del Toro (southern Central Andes, Argentina) to a hillslope‐process inventory from each contributing catchment. Our comparison reveals a shift from low‐slope gullying and scree production in slowly denuding, low‐slope areas to steep‐slope gullying and landsliding in fast‐denuding, steep areas. To investigate whether the nature of hillslope processes (locally excavating or more uniformly denuding) may be reflected in a comparison of the 10Be concentrations of sand and gravel, we define the normalized sand‐gravel index (NSGI) as the 10Be‐concentration difference between sand and gravel divided by their summed concentrations. We find a positive, linear relationship between the NSGI and median slope, such that our NSGI values broadly reflect the shift in hillslope processes from low‐slope gullying and scree production to steep‐slope gullying and landsliding. Higher NSGI values characterize regions affected by steep‐slope gullying or landsliding. We relate the large scatter in the relationship, which is exhibited particularly in low‐slope areas, to reduced hillslope‐channel connectivity and associated transient sediment storage within those catchments. While high NSGI values in well‐connected catchments are a reliable signal of deep‐excavation processes, hillslope excavation processes may not be reliably recorded by NSGI values where sediment experiences transient storage.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Advances in cosmogenic nuclide exposure dating have made moraines valuable terrestrial recorders of palaeoclimate. A growing number of moraine chronologies reported from the Central Andes show that tropical glaciers responded sensitively to past changes in precipitation and temperature over timescales ranging from 103 to 105 years. However, the causes of past glaciation in the Central Andes remain uncertain. Explanations have invoked insolation-modulated variability in the strength of the South American Summer Monsoon, teleconnections with the North Atlantic Ocean, and/or cooling in the Southern Hemisphere. The driver for these past climate changes is difficult to identify, partly due to a lack of dated moraine records, especially in climatically sensitive areas of the southern Central Andes. Moreover, new constraints are needed on precisely where and when glaciers advanced. We use cosmogenic 10Be produced in situ to determine exposure ages for three generations of moraines at the Sierra de Aconquija, situated at 27°S on the eastern flank of the southern Central Andes. These moraines record glacier advances at approximately 22 ka and 40 ka, coincident with summer insolation maxima in the sub-tropics of the Southern Hemisphere, as well as at 12.5 ka and 13.5 ka during the Younger Dryas and the Antarctic Cold Reversal, respectively. We also identify minor glaciation during Bond Event 5, also known as the 8.2 ka event. These moraines register past climate changes with high fidelity, and currently constitute the southernmost dated record of glaciation on the eastern flank of the Central Andes. To contextualise these results, we compile 10Be data reported from 144 moraines in the eastern Central Andes that represent past glacier advances. We re-calculate exposure ages from these data using an updated reference production rate, and we re-interpret the moraine ages by taking the oldest clustered boulder age (after the exclusion of outliers attributed to nuclide inheritance) as closest to the timing of glacier advance—an approach for which we provide empirical justification. This compilation reveals that Central Andean glaciers have responded to changes in temperature and precipitation. We identify cross-latitude advances in phase with insolation cycles, the last global glacial maximum, and episodes of strengthened monsoonal moisture transport including the Younger Dryas and Heinrich Stadials 1 and 2. Our results from the Sierra de Aconquija allow us to constrain the southerly limit of enhanced precipitation associated with Heinrich Stadials at ∼25°S. More broadly, our findings demonstrate at both local and regional scales that moraines record past climate variability with a fine spatial and temporal resolution.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-01-18
    Description: Climatically formed alluvial river-terrace sequences offer an exceptional opportunity to study valley-width evolution under similar discharge and lithologic conditions. To investigate additional parameters controlling valley width, we globally compiled alluvial-terrace sequences that have been associated with late Quaternary climate changes. All terrace cross-sections that are accepted to our compilation (1) include both valley sides, (2) show absolute values of distance and height, as well as profile location, and, (3) display a minimum of three terrace levels out of which at least one is preserved as a paired terrace. The terrace width and height measurements are summarized in this dataset. The data are presented as Excel and ASCII tables.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: Fluvial fill terraces in intermontane basins are valuable geomorphic archives that can record tectonically and/or climatically driven changes of the Earth-surface process system. However, often the preservation of fill terrace sequences is incomplete and/or they may form far away from their source areas, complicating the identification of causal links between forcing mechanisms and landscape response, especially over multi-millennial timescales. The intermontane Toro Basin in the southern Central Andes exhibits at least five generations of fluvial terraces that have been sculpted into several-hundred-meter-thick Quaternary valley-fill conglomerates. New surface-exposure dating using nine cosmogenic 10Be depth profiles reveals the successive abandonment of these terraces with a 100 kyr cyclicity between 75 ±7and 487 ±34ka. Depositional ages of the conglomerates, determined by four 26Al/10Be burial samples and U–Pb zircon ages of three intercalated volcanic ash beds, range from 18 ±141to 936 ±170ka, indicating that there were multiple cut-and-fill episodes. Although the initial onset of aggradation at ∼1 Ma and the overall net incision since ca. 500 ka can be linked to tectonic processes at the narrow basin outlet, the superimposed 100 kyr cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods and enhanced humid phases recorded in paleoclimate archives on the adjacent Bolivian Altiplano, whereas deposition occurred mainly during more arid phases on the Altiplano and global interglacial periods. We suggest that enhanced runoff during global cold phases – due to increased regional precipitation rates, reduced evapotranspiration, or both – resulted in an increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. Compared with two nearby basins that record precessional (21-kyr) and long-eccentricity (400-kyr) forcing within sedimentary and geomorphic archives, the recorded cyclicity scales with the square of the drainage basin length.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-18
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-18
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-18
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-03
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-03
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-12
    Description: In the last two decades, the use ofin situcosmogenic nuclides for the quantification of exogenic processes and thedetermination of exposure ages of landforms has seen a fast and broad expansion. Among the group of terrestrialcosmogenic nuclides that can be used to study geomorphic processes (e.g.10Be,26Al,36Cl,3He,21Ne and22Ne),in situ-produced10Be is the most widely used, especially for the quantification of denudation rates. However,there are a number of problematic issues related to the use of cosmogenic nuclide techniques in rapidly evolvinglandscapes because of the typically low10Be abundancies. The difficulties encountered in these settings are mainlyrelated to (1) the mass of clean quartz that can be obtained and thus the total amount of10Be available, and (2) thebackgrounds of the sample preparation and measurement processes. In order to improve measurements in thesecircumstances, a series of steps can be taken into consideration during field work and sample preparation to helpimprove the final results. We discuss the quality of the blanks, blank corrections, and the limits of detection of thetechnique in the specific case of low concentration samples. Based on a number of different synthetic scenarios,we demonstrate the importance of blank corrections and utility of determination limits, and we highlight how theseparameters may affect the reliability and meaningfulness of the results. This information in turn helps to illustratehow low-concentration data should be interpreted and reported.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...