ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (4)
Collection
Keywords
Language
  • English  (4)
Years
  • 1
    facet.materialart.
    Unknown
    In:  Earth and Planetary Science Letters
    Publication Date: 2020-02-12
    Description: The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10–50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100–200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10–50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10–50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The main aim of this study is to create a data set of accurate absolute arrival times for stations in Europe which do not report to the International Seismological Centre (ISC). Waveforms were obtained from data centres and temporary experiments and a semi-automatic picking method was applied to determine absolute arrival times for P and S phases. 85 000 arrival times were picked whose distribution of residuals shows generally low standard deviations on the order of 0.5–0.7 s. Furthermore, mean teleseismic station residuals reflect the properties of the underlying crust and uppermost mantle. Comparison to ISC data for matching event-station-phase combinations also confirms the good quality of the new absolute arrival time picks. Most importantly, this data set complements the ISC data as it fills regional data coverage gaps in Europe.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: TOPO-EUROPE addresses the 4-D topographic evolution of the orogens and intra-plate regions of Europe through a multidisciplinary approach linking geology, geophysics, geodesy and geotechnology. TOPO-EUROPE integrates monitoring, imaging, reconstruction and modelling of the interplay between processes controlling continental topography and related natural hazards. Until now, research on neotectonics and related topography development of orogens and intra-plate regions has received little attention. TOPO-EUROPE initiates a number of novel studies on the quantification of rates of vertical motions, related tectonically controlled river evolution and land subsidence in carefully selected natural laboratories in Europe. From orogen through platform to continental margin, these natural laboratories include the Alps/Carpathians–Pannonian Basin System, the West and Central European Platform, the Apennines–Aegean–Anatolian region, the Iberian Peninsula, the Scandinavian Continental Margin, the East-European Platform, and the Caucasus–Levant area. TOPO-EUROPE integrates European research facilities and know-how essential to advance the understanding of the role of topography in Environmental Earth System Dynamics. The principal objective of the network is twofold. Namely, to integrate national research programs into a common European network and, furthermore, to integrate activities among TOPO-EUROPE institutes and participants. Key objectives are to provide an interdisciplinary forum to share knowledge and information in the field of the neotectonic and topographic evolution of Europe, to promote and encourage multidisciplinary research on a truly European scale, to increase mobility of scientists and to train young scientists. This paper provides an overview of the state-of-the-art of continental topography research, and of the challenges to TOPO-EUROPE researchers in the targeted natural laboratories.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-10
    Description: The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature; how plate boundaries are created over thousands of kilometres in geologically short periods remains elusive. Here we show from geological observations that a 〉12,000-km-long plate boundary formed between the Indian and African plates around 105 Myr ago. This boundary comprised subduction segments from the eastern Mediterranean region to a newly established India–Africa rotation pole in the west Indian Ocean, where it transitioned into a ridge between India and Madagascar. We identify coeval mantle plume rise below Madagascar–India as the only viable trigger of this plate rotation. For this, we provide a proof of concept by torque balance modelling, which reveals that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large-plate rotation, initiating divergent and convergent plate boundaries far away from the plume head. We suggest that this mechanism may be an underlying cause of the emergence of modern plate tectonics.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...