ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (15)
Collection
Language
  • English  (15)
  • 1
    Publication Date: 2024-03-26
    Description: Tree regeneration is a key process in forest dynamics, particularly in the context of forest resilience and climate change. Models are pivotal for assessing long-term forest dynamics, and they have been in use for more than 50 years. However, an assessment of their ability to accurately represent tree regeneration is lacking. We assess how well current models capture the overall abundance, species composition, and mortality of tree regeneration. Using 15 models built to capture long-term forest dynamics at the stand, landscape, and global levels, we simulate tree regeneration at 200 sites representing large environmental gradients across Central Europe. The results are evaluated against comprehensive data from unmanaged forests. Most of the models overestimate regeneration levels, which is only compensated in some models by high simulated mortality rates in the early stages of individual trees dynamics. Simulated species diversity of regeneration matches the observed ranges. Models simulating higher species diversity at the stand level do not feature higher regeneration diversity. The effect of light availability on regeneration levels is captured better than the effect of temperature and soil moisture, but patterns are not consistent across models. Increasing complexity in the tree regeneration modules of the models is not related to higher accuracy of simulated tree regeneration. Furthermore, individual model design is more important than scale (stand, landscape, global) and approach (empirical, process-based) for accurately capturing tree regeneration. Despite considerable mismatches between simulation results and data, it is remarkable that most models capture the essential features of the highly complex process of tree regeneration, while not having been parameterized with such data. We conclude that much can be gained by evaluating and refining the modeling of regeneration processes. This has the potential to render long-term projections of forest dynamics under changing environmental conditions that are much more robust.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-14
    Description: EnMAP (Environmental Mapping and Analysis Program, www.enmap.org) is a German, Earth observing, imaging spectroscopy, spaceborne mission planned for launch in 2020. The data products will cover the spectral range from 420 nm to 2450 nm with a spectral sampling distance between 5 and 12 nm with an expected signal-to-noise-ratio of 400:1 in the visible near-infrared and 180:1 in the shortwave infrared parts of the electro-magnetic spectrum. The resulting images will cover an area of 30 km in the across- track direction with a ground sampling distance of 30 m. The across-track tilt-capability of 30° enables revisit times of less than four days. The resulting data products will be freely available to the scientific user community for measuring, deriving, and analyzing diagnostic parameters, which describe vital processes on the Earth's surface comprising agriculture, forestry, soil and geological environments, as well as coastal zones and inland waters. This work concentrates on the description of activities performed and facilities involved for the preparation of these products. It starts out by the description of the User Portals for observation requests and acquisition planning, touches the aspects of creating the time-lines, the commanding and controlling of the satellite, the downlink of the telemetry and payload data, the design of the processing chain and the archiving of data plus a set of activities flanking the above for the provision of high-quality data products.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report
    Publication Date: 2020-02-12
    Description: In order to analyze mineralogical-geochemical changes occurring in whole rock reservoir samples (Stuttgart Formation) from the Ketzin pilot CO2 storage site, Brandenburg/Germany as well as to investigate single fluid-mineral reactions laboratory experiments and geochemical modeling were performed. The whole rock core samples of the Stuttgart Formation were exposed to synthetic brine and pure CO2 at experimental P-T conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate the natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of analcime, anhydrite, the anorthite component of plagioclase, chlorite + biotite, hematite and K-feldspar. Dissolution of anhydrite, the anorthite component of plagioclase and K-feldspar is also observed in siltstone experiments. During equilibrium simulations best matching models were ranked based on a mathematical statistical dispersion relation. The best matching model comprises a mineral combination of the albite component of plagioclase, anhydrite, dolomite, hematite, and illite. The equilibrium modeling showed that it is difficult to match K+, Fe2+ and SO4 2- brine concentrations simultaneously. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These kinetic simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ were not completely covered. Generally larger mismatches for dissolved Al3+ and Si4+ in all the completed simulations are most likely related to the sampling strategy and respective inaccuracies in the measured concentrations of dissolved Al3+ and Si4+. The kinetic simulation suppressing mineral precipitation yields best matches with experimental observations. The modeling shows acceptably well matches with measured brine ion concentrations, and the modeling results identified primary minerals as well as key chemical processes. It was also shown that the modeling approach is not capable of completely covering complex natural systems. Experiments on mineral separates were conducted with 2 M NaCl brine and pure CO2 using siderite, illite and labradorite samples. Experimental P-T conditions were 20 (30) MPa and 80 °C; run durations were one (siderite), two (illite) and three weeks (labradorite), respectively. Based on the acquired set of mineralogical-geochemical data the distinct experiments show: (i) dissolution of ankerite and stable siderite, which is therefore interpreted to be a potential CO2 trapping phase, (ii) preferred dissolution of the Ca-smectite component out of the illite-smectite mixed-layer mineral and (iii) dissolution of labradorite, respectively. No mineral precipitates (e.g. carbonate phases) were detected in any of the conducted laboratory experiments, and only one single kinetic simulation predicts the formation of minute amounts of dolomite. Based on the data acquired during this dissertation the mineralogical-geochemical effects of CO2 are minor, and the (chemical) integrity of the Ketzin reservoir system is not significantly affected by injected CO2.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large‐scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph‐based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space–time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-22
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a spaceborne German hyperspectral satellite mission that aims at monitoring and characterizing the Earth's environment on a global scale. EnMAP core themes are environmental changes, ecosystem responses to human activities, and management of natural resources. After several years delay, the instrument is finished and in the final stage of environmental characterization and assembly for a launch early 2022. This paper presents an update of the mission status and activities in the frame of the science preparation and mission support project led by the German Research Center for Geosciences (GFZ) Potsdam. Further, this paper presents a specific focus on the planning for the independent EnMAP data product validation.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-09
    Description: Gypsum crystals are found at the well perforation of observation well Ktzi 202 of the test site for CO2 storage at Ketzin, Germany. XRD analysis confirms pure gypsum. Fluid samples before and after CO2 injection are analyzed. Geochemical modeling is conducted to identify the mechanisms that lead to gypsum formation. The modeling is carried out with PHREEQC and Pitzer database due to the high salinity of up to 5 mol per kg water. Due to their significantly higher reactivity compared to other minerals like silicates, calcite, dolomite, magnesite, gypsum, anhydrite, and halite are considered as primary mineral phases for matching the observed brine compositions in our simulations. Calcite, dolomite, and gypsum are close to saturation before and after CO2 injection. Dolomite shows the highest reactivity and mainly contributes to buffering the brine pH that initially decreased due to CO2 injection. The contribution of calcite to the pH-buffering is only minor. Gypsum and anhydrite are no geochemically active minerals before injection. After CO2 injection, gypsum precipitation may occur by two mechanisms: (i) dissociation of CO2 decreases activity of water and, therefore, increases the saturation of all minerals and (ii) dolomite dissolution due to pH-buffering releases Ca2+ ions into solution and shifts the mass action to gypsum. Gypsum precipitation decreases with increasing temperature but increases with increasing partial CO2 pressure. Our calculations show that calcium sulfate precipitation increases by a factor of 5 to a depth of 2000 m when Ketzin pressure and temperature are extrapolated. In general, gypsum precipitation constitutes a potential clogging hazard during CO2 storage and could negatively impact safe site operation. In the presented Ketzin example, this threat is only minor since the total amount of gypsum precipitation is relatively small.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-08
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a spaceborne German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. This paper presents an update of the mission status with developments from the space and the ground segment. © 2021 The Author (s).
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-06
    Description: The scope of the Science Plan is to describe the scientific background, applications, and activities of the Environmental Mapping and Analysis Program (EnMAP) imaging spectroscopy mission. Primarily, this document addresses scientists and funding institutions, but it may also be of interest to environmental stakeholders and governmental agencies. It is designed to be a living document that will be updated throughout the entire mission lifetime. Chapter 1 provides a brief overview of the principles and current state of imaging spectroscopy. This is followed by an introduction to the EnMAP mission, including its objectives and impact on international programs as well as major environmental and societal challenges. Chapter 2 describes the EnMAP system together with data products and access, calibration/validation, and synergies with other missions. Chapter 3 gives an overview of the major fields of application such as vegetation and forests, geology and soils, coastal and inland waters, cryosphere, urban areas, atmosphere and hazards. Finally, Chapter 4 outlines the scientific exploitation strategy, which includes the strategy for community building and training, preparatory flight campaigns and software developments. A list of abbreviations is provided in the annex to this document and an extended glossary of terms and abbreviations is available on the EnMAP website.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-03
    Description: The high-resolution imaging spectroscopy remote sensing mission EnMAP (Environmental Mapping and Analysis Program, enmap.org) covers the spectral range from 420 nm to 2450 nm with a spectral sampling distance varying between 4.8 nm and 12.0 nm comprising 262 spectral bands. We focus on the planned framework concerning radiometry. The expected signal-to-noise ratio at reference radiance level is 500:1 at 495 nm and 150:1 at 2200 nm. The radiometric resolution is 14 bits and an absolute radiometric accuracy of better than 5% is achieved. Radiometric calibration is based on Sun calibration measurements with a fullaperture diffusor for absolute calibration. In addition, relative calibration monitors the instrument during the complete mission lifetime based on an integrating sphere (on the satellite). The fully-automatic on-ground image processing chain considers the derived radiometric calibration coefficients in the radiometric correction which is followed by the orthorectification and atmospheric compensation. Each of the two 2-dimensional detector arrays of the prism-based pushbroom dual-spectrometer works in a dual-gain configuration to cover the complete dynamic range. EnMAP will acquire 30 km in the across-track direction with a ground sampling distance of 30 m and the across-track tilt capability of 30° will enable a target revisit time of less than 4 days. The launch is scheduled for 2021. The high-quality products will be freely available to international scientific users for measuring and analysing diagnostic parameters which describe vital processes on the Earth’s surface
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-01
    Description: The Menderes Massif in Turkey represents one of the largest metamorphic core complexes in the world. It is regarded as a section of lower continental crust exhumed along low-angle detachment faults in the Late Miocene during a period of extension that affected the entire Aegean province. Syn-extensional magmatic activity within the Menderes metamorphic core complex is predominantly felsic forming several plutons, whereas mantle-derived magmatism has not been known so far. Here, we present a detailed study of the petrology and geochemistry of previously unreported mafic to intermediate lamprophyres within the Menderes Massif and assess their role in the geodynamic evolution of the core complex. The Menderes lamprophyres are mostly kersantites, with 49–60 wt % SiO2, 3.2–8.4 wt % MgO, 100–360 ppm Cr, 32–132 ppm Ni and Mg# of 37–50. Positive Pb and negative Ti–Nb–Ta anomalies suggest a clear orogenic affinity. Isotopes of Sr and Pb are relatively radiogenic (87Sr/86Sr = 0.70609–0.71076; 206Pb/204Pb = 18.88–19.03, 207Pb/204Pb 〉 15.71), while Nd is unradiogenic (εNd =  −1.4 to −3.2). Most phenocrysts are sharply zoned with a primitive core (Mg# 77–85, up to 0.95 wt % Cr2O3 in clinopyroxene; Mg# 72–76 in amphibole) and a more evolved rim (Mg# 68–74, 〈0.25 wt % Cr2O3 in clinopyroxene; Mg# 69–71 in amphibole). Trace element ratios between different cores may vary significantly (e.g. Dy/Yb 2–5 in amphiboles), whereas rims show less variation but are more enriched than the cores. U–Pb dating of zircons provides an age of 15 Ma for the lamprophyres, coeval with the syn-extensional granite magmatism. The Hf isotopic composition of magmatic zircons is variably unradiogenic (176Hf/177Hf15Ma = 0.28248–0.28253, εHf15Ma = −8.6 to −10.5), while zircon xenocrysts with dominantly Cadomian and older ages show highly variable Hf isotopic signatures at the time of lamprophyre emplacement (εHf15Ma = −7.6 to −46.7). The orogenic geochemical signature of the lamprophyres’ parental melts is similar to nearby orogenic lavas from the West Anatolian Volcanic Province. Variation in bulk-rock εNd and in Dy/Yb ratios of phenocryst cores reflect moderate mantle heterogeneity. The chemical heterogeneity of phenocrysts and zircon εHf values implies intense hybridisation of proto-lamprophyre melts with felsic crustal melts, most probably derived from the melting of augen gneisses of the Menderes basement. We propose that fluid released from the lamprophyre primary melt had a decisive impact on crustal melting and the formation of granitic plutons within the Menderes core complex.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...