ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI G3-22-94687
    Description / Table of Contents: Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the ...
    Type of Medium: Dissertations
    Pages: xxiv, 134 Seiten , Illustrationen, Diagramme, Karten
    Language: English
    Note: Dissertation, Universität Potsdam, 2021 , Table of Contents Abstract Zusammenfassung List of Figures List of Tables Abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost and climate change 1.1.2 Permafrost thaw and disturbances 1.1.3 Abrupt permafrost disturbances 1.1.4 Remote sensing 1.1.5 Remote sensing of permafrost disturbances 1.2 Aims and objectives 1.3 Study area 1.4 General data and methods 1.4.1 Landsat and Sentinel-2 1.4.2 Google Earth Engine 1.5 Thesis structure 1.6 Overview of publications and authors’ contribution 1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 2 Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Sites 2.3.2 Data 2.3.3 Data Processing 2.3.3.1 Filtering Image Collections 2.3.3.2 Creating L8, S2, and Site Masks 2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP 2.3.3.4 Applying Site Masks 2.3.4 Spectral Band Comparison and Adjustment 2.4 Results 2.4.1 Spectral Band Comparison 2.4.2 Spectral Band Adjustment 2.4.3 ES and HLS Spectral Band Adjustment 2.5 Discussion 2.6 Conclusions 2.7 Acknowledgements 2.8 Appendix Chapter 2 3 Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Materials and Methods 3.3.1 Study Sites 3.3.2 Data 3.3.3 Data Processing and Mosaicking Workflow 3.3.4 Data Availability Assessment 3.3.5 Mosaic Coverage and Quality Assessment 3.4 Results 3.4.1 Data Availability Assessment 3.4.2 Mosaic Coverage and Quality Assessment 3.5 Discussion 3.6 Conclusions 4 Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 4.1 Abstract 4.2 Introduction 4.3 Study Area and Methods 4.3.1 Study area 4.3.2 General workflow and ground truth data 4.3.3 Data and LandTrendr 4.3.4 Index selection 4.3.5 Temporal Segmentation 4.3.6 Spectral Filtering 4.3.7 Spatial masking and filtering 4.3.8 Machine-learning object filter 4.4 Results 4.4.1 Focus sites 4.4.2 North Siberia 4.5 Discussion 4.5.1 Mapping of RTS 4.5.2 Spatio-temporal variability of RTS dynamics 4.5.3 LT-LS2 capabilities and limitations 4.6 Conclusion 4.7 Appendix 5 Synthesis and Discussion 5.1 Google Earth Engine 5.2 Landsat and Sentinel-2 5.3 Image mosaics and disturbance detection algorithm 5.4 Mapping RTS and their annual temporal dynamics 5.5 Limitations and technical considerations 5.6 Key findings 5.7 Outlook References Acknowledgements
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-17
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-09
    Description: Soils in the permafrost region have acted as carbon sinks for thousands of years. As a result of global warming, permafrost soils are thawing and will potentially release greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2). However, small-scale spatial heterogeneities of GHG production have been neglected in previous incubation studies. Here, we used an anaerobic incubation experiment to simulate permafrost thaw along a transect from upland Yedoma to the floodplain on Kurungnakh Island. Potential CO2 and CH4 production was measured during incubation of the active layer and permafrost soils at 4 and 20 ∘C, first for 60 d (approximate length of the growing season) and then continuing for 1 year. An assessment of methanogen abundance was performed in parallel for the first 60 d. Yedoma samples from upland and slope cores remained in a lag phase during the growing season simulation, while those located in the floodplain showed high production of CH4 (6.5×103 µg CH4-C g−1 C) and CO2 (6.9×103 µg CO2-C g−1 C) at 20 ∘C. The Yedoma samples from the permafrost layer started producing CH4 after 6 months of incubation. We conclude that landscape position is a key factor triggering CH4 production during the growing season time on Kurungnakh Island.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-19
    Description: A large fraction of the uncertainty around future global warming is due to the cooling effect of aerosol-liquid cloud interactions, and in particular to the elusive sign of liquid water path (LWP) adjustments to aerosol perturbations. In fact, satellite and climate model estimates of these LWP adjustments tend to differ in magnitude and sign. With the advancement of higher-resolution climate models, which can resolve more and more cloud processes, there is hope to bridge this gap. In this study, we compare the timescales of the response of stratocumulus clouds to aerosol perturbations in geostationary satellite data and in cloud-resolving model simulations obtained with the ICOsahedral Non-hydrostatic climate model (ICON). We apply a causal inference method to diagnose where differences arise. Preliminary results show that issues associated with both satellite retrieval assumptions and model parameterization assumptions lead to differences in the sensitivity estimates. These results suggest that time-aware causal analyses are key to reconcile conflicting studies concerning the sign of LWP adjustments across different data sources.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: Abstract. Tropical convective activity represents a source of predictability for mid-latitude weather in the Northern Hemi-sphere. In winter, the El Niño–Southern Oscillation (ENSO) is the dominant source of predictability in the tropics and ex-tratropics, but its role in summer is much less pronounced and the exact teleconnection pathways are not well under-stood. Here, we assess how tropical convection interacts with mid-latitude summer circulation at different intra-seasonal timescales and how ENSO affects these interactions. First, we apply maximum covariance analysis (MCA) between tropical convective activity and mid-latitude geopotential height fields to identify the dominant modes of interaction. The first MCA mode connects the South Asian monsoon with the mid-latitude circumglobal teleconnection pattern. The second MCA mode connects the western North Pacific summer monsoon in the tropics with a wave-5 pattern centred over the North Pacific High in the mid-latitudes. We show that the MCA patterns are fairly insensitive to the selected intra-seasonal timescale from weekly to 4-weekly data. To study the potential causal interdependencies between these modes and with other atmospheric fields, we apply the causal discovery method PCMCI at different timescales. PCMCI extends standard correlation analysis by removing the con-founding effects of autocorrelation, indirect links and com-mon drivers. In general, there is a two-way causal interaction between the tropics and mid-latitudes, but the strength and sometimes sign of the causal link are timescale dependent. We introduce causal maps that show the regionally specific causal effect from each MCA mode. Those maps confirm the dominant patterns of interaction and in addition high-light specific mid-latitude regions that are most strongly con-nected to tropical convection. In general, the identified causal teleconnection patterns are only mildly affected by ENSO and the tropical mid-latitude linkages remain similar. Still, La Niña strengthens the South Asian monsoon generating a stronger response in the mid-latitudes, while during El Niño years the Pacific pattern is reinforced. This study paves the way for process-based validation of boreal summer telecon-nections in (sub-)seasonal forecast models and climate mod-els and therefore works towards improved sub-seasonal pre-dictions and climate projections.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-21
    Description: Network theory, as emerging from complex systems science, can provide critical predictive power for mitigating the global warming crisis and other societal challenges. Here we discuss the main differences of this approach to classical numerical modeling and highlight several cases where the network approach substantially improved the prediction of high-impact phenomena: 1) El Niño events, 2) droughts in the central Amazon, 3) extreme rainfall in the eastern Central Andes, 4) the Indian summer monsoon, and 5) extreme stratospheric polar vortex states that influence the occurrence of wintertime cold spells in northern Eurasia. In this perspective, we argue that network-based approaches can gainfully complement numerical modeling.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-07
    Description: Learning from successful applications of methods originating in statistical mechanics, complex systems science, or information theory in one scientific field (e.g., atmospheric physics or climatology) can provide important insights or conceptual ideas for other areas (e.g., space sciences) or even stimulate new research questions and approaches. For instance, quantification and attribution of dynamical complexity in output time series of nonlinear dynamical systems is a key challenge across scientific disciplines. Especially in the field of space physics, an early and accurate detection of characteristic dissimilarity between normal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. This review provides a systematic overview on existing nonlinear dynamical systems-based methodologies along with key results of their previous applications in a space physics context, which particularly illustrates how complementary modern complex systems approaches have recently shaped our understanding of nonlinear magnetospheric variability. The rising number of corresponding studies demonstrates that the multiplicity of nonlinear time series analysis methods developed during the last decades offers great potentials for uncovering relevant yet complex processes interlinking different geospace subsystems, variables and spatiotemporal scales.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Munich Society for the Promotion of Economic Research - CESifo
    In:  CESifo Working Papers
    Publication Date: 2024-01-16
    Description: This paper highlights the importance of carbon dioxide removal (CDR) technologies for climate policy. We first describe their role in iconic transformation pathways and discuss removal costs and storage duration of different technologies. Based on economic principles, we characterize optimal removal flows and reservoirs for non-permanent removals. Furthermore, we discuss different pricing regimes that achieve an optimal allocation under different information and liability conditions. Notably, seemingly cheap removal technologies in the land sector can indeed be very expensive when increasing opportunity costs and and impermanence are appropriately accounted for. The use of non-permanent removal – though to a certain extent economically optimal – creates high liability to firms and regulators that warrants a careful and deliberative risk management. Based on these insights, we discuss how policy makers can embed the CDR option in the EU’s policy architecture. There are four key tasks for regulating bodies to ensure an optimal governance: the management of the net carbon emission cap; support for research, development and diffusion of CDR technologies; certification of the quality of removals; management of the liability implied by non-permanent CDR. We propose that three new institutions, a European Carbon Central Bank, a Carbon Removal Certification Authority and a Green Leap Innovation Authority, are established to carry out these tasks.
    Language: English
    Type: info:eu-repo/semantics/report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-11
    Description: Climate policy increasingly requires carbon dioxide removal (CDR). We describe its role, characterize optimal flows for non-permanent removals and describe optimal pricing regimes under different information and liability conditions. Non-permanent removal – though to a certain extent optimal – creates liabilities that warrant careful risk management. Thus, seemingly cheap land-based technologies can become expensive. We discuss possibilities for integrating CDR in the EU policy architecture and define four tasks: managing the emission cap; R&D support; quality certification of removals; management of liabilities from non-permanent CDR. We propose three institutions for these tasks: a European Carbon Central Bank, a Carbon Removal Certification Authority and a Green Leap Innovation Authority.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: The treatise is the first coherent and comprehensive presentation of the important sub-field of ""technology entrepreneurship"" emphasizing the science and engineering perspectives. It is a presentation of technology entrepreneurship as an inter-cultural approach referring to the US and Germany. It integrates micro- and macro aspects referring to numerous cases of firms' foundations. The book provides also a new semi-quantitative approach to growth of new technology ventures.
    Keywords: QD1-999 ; Unternehmertum ; Unternehmer ; Technology ; Entrepreneurship ; Science ; Firmengründungen ; TechnikEntrepreneurs ; Firms' Foundations ; Wissenschaft ; thema EDItEUR::P Mathematics and Science::PN Chemistry
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...