ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
Collection
Language
  • English  (5)
Years
  • 1
    Publication Date: 2020-02-12
    Description: Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017–1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal1 comes from accelerators capable of producing cosmic rays of these energies2. Cosmic rays initiate air showers—cascades of secondary particles in the atmosphere—and their masses can be inferred from measurements of the atmospheric depth of the shower maximum3 (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground4. Current measurements5 have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6, 7, 8 is a rapidly developing technique9 for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front6, 12. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 1017–1017.5 electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 1017.5 electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 1017–1017.5 electronvolt range.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-14
    Description: Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends—called positive and negative leaders1. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30–300-megahertz frequency band2,3,4,5,6,7,8 that can be remotely sensed and imaged with high spatial and temporal resolution9,10,11. Positive leaders propagate more continuously and thus emit very little high-frequency radiation12. Radio emission from positive leaders has nevertheless been mapped13,14,15, and exhibits a pattern that is different from that of negative leaders11,12,13,16,17. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders9,12,16,18,19,20, which may lead to current pulses that both reconnect positive leaders to negative leaders11,16,17,20,21,22 and cause multiple cloud-to-ground lightning events1. The disconnection process is thought to be due to negative differential resistance18, but this does not explain why the disconnections form primarily on positive leaders22, or why the current in cloud-to-ground lightning never goes to zero23. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures—which we call ‘needles’—that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cassiopeia A, taken overnight on 18–19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10–80 MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR “core” reveals two different velocities in the scintillation pattern: a primary velocity of ~20–40 ms−1 with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of ~110 ms−1 with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller-scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims. Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods. We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30–77 MHz and Very Large Array (VLA) L-band observations at 1–2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the ~100–500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results. We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta (as more and more material meets the reverse shock and heats up) cannot account for the observed low-frequency behaviour of the secular decline rate. Conclusions. To reconcile our low-frequency absorption measurements with models that reproduce much of the observed behaviour in Cas A and predict little mass in the unshocked ejecta, the ejecta need to be very clumped or the temperature in the cold gas needs to be low (~10 K). Both of these options are plausible and can together contribute to the high absorption value that we find.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-11
    Description: The International LOFAR Telescope is an interferometer with stations spread across Europe. With baselines of up to ~2000 km, LOFAR has the unique capability of achieving sub-arcsecond resolution at frequencies below 200 MHz. However, it is technically and logistically challenging to process LOFAR data at this resolution. To date only a handful of publications have exploited this capability. Here we present a calibration strategy that builds on previous high-resolution work with LOFAR. It is implemented in a pipeline using mostly dedicated LOFAR software tools and the same processing framework as the LOFAR Two-metre Sky Survey (LoTSS). We give an overview of the calibration strategy and discuss the special challenges inherent to enacting high-resolution imaging with LOFAR, and describe the pipeline, which is publicly available, in detail. We demonstrate the calibration strategy by using the pipeline on P205+55, a typical LoTSS pointing with an 8 h observation and 13 international stations. We perform in-field delay calibration, solution referencing to other calibrators in the field, self-calibration of these calibrators, and imaging of example directions of interest in the field. We find that for this specific field and these ionospheric conditions, dispersive delay solutions can be transferred between calibrators up to ~1.5° away, while phase solution transferral works well over ~1°. We also demonstrate a check of the astrometry and flux density scale with the in-field delay calibrator source. Imaging in 17 directions, we find the restoring beam is typically ~0.3′′ ×0.2′′ although this varies slightly over the entire 5 deg2 field of view. We find we can achieve ~80–300 μJy bm−1 image rms noise, which is dependent on the distance from the phase centre; typical values are ~90 μJy bm−1 for the 8 h observation with 48 MHz of bandwidth. Seventy percent of processed sources are detected, and from this we estimate that we should be able to image roughly 900 sources per LoTSS pointing. This equates to ~ 3 million sources in the northern sky, which LoTSS will entirely cover in the next several years. Future optimisation of the calibration strategy for efficient post-processing of LoTSS at high resolution makes this estimate a lower limit.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...