ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (16)
Collection
Language
  • English  (16)
  • 1
    Publication Date: 2021-09-27
    Description: A new global climate model setup using FESOM2.0 for the sea ice-ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long-term climate integrations using a locally eddy-resolving ocean. Here it is evaluated in terms of (1) the mean state and long-term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy-resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin-up. However, it is argued that the strategy of “de-drifting” climate runs after the short spin-up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy-permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Keywords: 551.6 ; FESOM ; ocean model ; climate model ; unstructured mesh ; Finite Volume
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-23
    Description: Many state‐of‐the‐art climate models do not simulate the Atlantic Water (AW) layer in the Arctic Ocean realistically enough to address the question of future Arctic Atlantification and its associated feedback. Biases concerning the AW layer are commonly related to insufficient resolution and excessive mixing in the ocean component as well as unrealistic Atlantic‐Arctic Ocean exchange. Based on sensitivity experiments with FESOM1.4, the ocean–sea‐ice component of the global climate model AWI‐CM1, we show that even if all impediments for simulating AW realistically are addressed in the ocean model, new biases in the AW layer develop after coupling to an atmosphere model. By replacing the wind forcing over the Arctic with winds from a coupled simulation we show that a common bias in the atmospheric sea level pressure (SLP) gradient and its associated wind bias lead to differences in surface stress and Ekman transport. Fresh surface water gets redistributed leading to changes in halosteric height distribution. Those changes lead to strengthening of the anticyclonic surface circulation in the Canadian Basin, so that the deep counterflow carrying warm AW gets reversed and a warm bias in the Canadian Basin develops. The SLP and anticyclonic wind bias in the Nordic Seas weaken the cyclonic circulation leading to reduced AW transport into the Arctic Ocean through Fram Strait but increased AW transport through the Barents Sea Opening. These effects together lead to a cold bias in the Eurasian Basin. An underestimation of sea ice concentration can significantly amplify the induced ocean biases.
    Description: Plain Language Summary: Coupled global climate models are used to predict anthropogenic climate change along with its impacts. The Arctic has experienced amplified warming in the recent decades compared to global mean warming and therefore is one region of intense climate research. In this context Atlantification of the Arctic Ocean has become a high priority topic. Atlantification describes the increasing impact of oceanic heat from the Atlantic Water (AW) layer of the Arctic Ocean on the sea ice cover. In climate models, the direction and strength of simulated AW circulation around the Arctic Ocean is known to be sensitive to ocean grid resolution, parametrization, boundary and surface forcing or a combination thereof. Here we show that biases in the atmospheric component of climate models can interrupt and even reverse the simulated AW circulation at depth. Such biases can be further amplified by a negative bias in simulated sea ice cover. This study shows how these surface biases can negatively impact the deep ocean circulation.
    Description: Key Points: Many state‐of‐the‐art climate models fail to simulate the properties of the Atlantic Water layer in the Arctic Ocean realistically. Biases in Arctic sea level pressure and surface winds in atmosphere models can reverse Atlantic Water circulation. The underestimation of sea‐ice cover amplifies this problem further.
    Description: European Union's Horizon 2020 Research and Innovation program
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-13
    Description: Extreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China. We find that rice yield reductions due to extreme rainfall were comparable to those induced by extreme heat over the last two decades, reaching 7.6 ± 0.9% (one standard error) according to nationwide observations and 8.1 ± 1.1% according to the crop model incorporating the mechanisms revealed from manipulative experiments. Extreme rainfall reduces rice yield mainly by limiting nitrogen availability for tillering that lowers per-area effective panicles and by exerting physical disturbance on pollination that declines per-panicle filled grains. Considering these mechanisms, we projected ~8% additional yield reduction due to extreme rainfall under warmer climate by the end of the century. These findings demonstrate that it is critical to account for extreme rainfall in food security assessments.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-06
    Description: New particle formation (NPF) and subsequent particle growth are important sources of condensation nuclei (CN) and cloud condensation nuclei (CCN). While a number of observations have shown positive contributions of NPF to CCN at low supersaturation, negative NPF contributions were often simulated. Using the observations in a typical coastal city of Qingdao, we thoroughly evaluate the simulated number concentrations of CN and CCN using a NPF-explicit parameterization embedded in WRF-Chem model. In terms of CN, the initial simulation shows large biases of particle number concentrations at 10–40 nm (CN10–40) and 40–100 nm (CN40–100). By adjusting the process of gas-particle partitioning, including mass accommodation coefficient of sulfuric acid, the phase changes of primary organic aerosol emissions and the condensational amount of nitric acid, the concomitant improvement of the particle growth process yields a substantial reduction of overestimates of CN10–40 and CN40–100. Regarding CCN, SOA formed from the oxidation of semi-volatile and intermediate volatility organic vapors (SI-SOA) yield is an important contributor. In the original WRF-Chem model with 20 size bins setting, the yield of SI-SOA is too high without considering the differences in oxidation rates of the precursors. Lowering the SI-SOA yield results in much improved simulations of the observed CCN concentrations. On the basis of the bias-corrected model, we find substantial positive contributions of NPF to CCN at low supersaturation (~0.2 %) in Qingdao and over the broad areas of China, primarily due to the competing effects of increasing particle hygroscopicity surpassing that of particle size decrease. This study highlights the potentially much larger NPF contributions to CCN on a regional and even global basis.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    In:  Scientific Technical Report STR
    Publication Date: 2020-02-12
    Description: HALO_GPS is a precise GPS kinematic positioning software. It was developed at GFZ Potsdam for the German HALO project. The goal is to develop a software which is able to achieve cm-level accuracy for an aircraft trajectory for application in airborne gravimetry.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-05-15
    Description: Due to high nonlinearity, the accurate prediction of the Antarctic circumpolar current (ACC) transport is still challenging. Using an eddy-permitting ocean model and the conditional nonlinear optimal perturbation approach, the predictability related to the ACC transport sudden shift through the Drake Passage (DP) is investigated by exploring the optimal precursor (OPR) and the optimally growing initial error (OGIE). The sudden shift in ACC transport is defined as a fluctuation exceeding two standard deviations (~16 Sv; 1 Sv = 10〈sup〉6〈/sup〉 m〈sup〉3 〈/sup〉s〈sup〉–1〈/sup〉) within 30 days. The OPRs and OGIEs for four different cases exhibit similar spatial patterns and primarily exist in the middle DP (58°S–62°S, 72°W–64°W) at the depth of 1000–3000 m. It implies that vigorous ACC variations are sensitive to the initial perturbations there. Moreover, the OPRs and OGIEs both undergo significant evolutions and trigger anomalous dipolar eddy-like circulations, although the signals evolving from the OPRs are stronger. Further investigation suggests density components determine such perturbation evolution processes and baroclinic instability plays a critical role. Observing system simulation experiments suggest that improving initial condition qualities in the sensitive area near the middle DP (especially in the deep layers) can effectively enhance the ACC transport prediction skills. By revealing spatial structures and growth mechanisms of the OPRs and OGIEs related to the short-term ACC transport prediction, this study highlights the importance of deep perturbations near the middle DP and further provides scientific guidance on designing observing networks in the DP.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-06-06
    Description: High Mountain Asia (HMA) glaciers are a key component of mountain hydrology and their seasonal ablation contributes significantly to the annual runoff of several large river systems that protect large populations from water stress. However, the seasonal cycle of glacial change remains unclear. Recent NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat-2) provides an opportunity to survey changes in the glacier surface elevation in unprecedented detail. Here, we used a new approach—which is based on a developed elevation bin cluster with a sliding filter and an iterative recovery method (EBC-SF)—to obtain the complete seasonal cycle of glacier thickness changes in High Mountain Asia. We generally identified three types of glaciers: (1) glaciers in the westerly dominant area (WDA) (2) glaciers in the Indian monsoon area (IMA), and (3) glaciers in the transition area (TA). The peak thickness values for the IMA, WDA and TA glaciers occur in February, May, and June, respectively. Most glaciers in WDA and IMA show a strong seasonal cycle with variations of more than 2 m, while the TA glaciers are mainly characterized by weak changes of up to 1 m. Overall, our results show that the glaciers can provide 67–138 Gt of meltwater per year to downstream. These results provide crucial information for the calibration of models that project glacier response to climate change and simulate the downstream water availability. our methodology facilitates the application of ICESat-2 to seasonal tracking of glacier variability in global alpine areas.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-04-27
    Description: The continuing retreat of sea ice affects the Arctic mesoscale eddies, and its future evolution will strongly influence air-sea-ice interactions. However, knowledge of eddy activity is limited to sparse observations and coarse resolution models. How future eddies and their effects will evolve remains uncertain. Here, we apply the global unstructured model FESOM2 for 143 years of 4.5 km-Arctic simulations up to 2100 and 1 km-Arctic simulations for 5 years from 2010; 2090 to reveal the interactions between eddies, winds, sea ice and the energy budget of eddy kinetic energy (EKE) in a high resolution view. We demonstrate a significant increase in future Arctic EKE from 0-200 m, which is stronger in summer when sea ice melts. The future abundance of EKE can be explained by an increase in winter eddy generation and a decrease in summer eddy dissipation. This also leads to an enhancement of the horizontal velocity field, thus filling the Arctic Ocean with eddies in the future.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-11
    Description: Uncertainties of physical parameters are important sources of uncertainties in numerical simulations and predictions. It is a key issue to identifying important and sensitive physical parameters for uncertainty reduction in numerical models. This study proposes a novel approach: conditional nonlinear optimal perturbations sensitivity analysis (CNOPSA). The CNOPSA method fully considers the nonlinear synergistic effects of parameters in the whole parameter space and quantitatively estimates the maximum effects of parameter uncertainties, prone to extreme events. Numerical results of the theoretical five-variable grassland ecosystem model demonstrate that the CNOPSA method can effectively identify the sensitive and important physical parameters and parameter combinations. Based on the Community Land Model (CLM5.0), the key physical processes and physical parameters of the net primary productivity (NPP) and soil organic carbon (SOC) simulation uncertainties in carbon-nitrogen-water cycle over the Tibetan Plateau are explored by using the CNOPSA method. Some carbon, nitrogen, and hydrological parameters are relatively sensitive and important to the simulation uncertainties in carbon cycle. However, the variance-based approach, based on the possibility of a limited parameter samples from a statistical point of view, only recognizes the importance of the carbon and nitrogen parameters. Additionally, the improvement of carbon cycle simulation abilities caused by eliminating the error of sensitive parameter combination identified by the CNOPSA method is also higher than the result of parameter combination identified by variance-based method. This study suggests that the CNOPSA method is effective and feasible for improving the simulation abilities in land surface models.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-02
    Description: Underlying the polar climate system is a number of closely coupled processes that are interconnected through complex feedbacks on a range of temporal and spatial scales. Observations are limited in these inaccessible and remote areas, and understanding of these processes often relies on regional and global climate modelling. However, large uncertainties remain due to unresolved key processes in both the regional and global context. In this presentation, we first show that large model spread and biases exist in simulating the Arctic Ocean hydrography from the latest CMIP6/OMIP experiments. Our results indicate there are almost no improvements compared with the previous CORE-II experiments (with similar OMIP-like protocol). The model spread and biases are especially conspicuous in the simulation of subsurface halocline and Atlantic Water, the latter often being too warm/thick/deep. The models largely agree on the interannual/decadal variabilities of key metrics, such as volume/heat/salt transport across main Arctic gateways, as dictated by the common atmospheric forcing. We then examine a hierarchy of global models with horizontal resolutions of the ocean on the order of 1-deg, 0.25-deg, and 0.1-deg. For the 0.1-deg resolution, we take advantage of a recent unprecedented ensemble of high-resolution CESM simulations, as well as NorESM simulations of similar ocean resolution but of shorter integration. High(er) resolutions show signs of improvements and advantages in simulating the Arctic Ocean, but certain biases remain, which will be discussed together with the challenges of high-resolution simulations in the region. Comparison with recent multi-platform observations in the Svalbard regions will also be discussed.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...