ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (7)
Collection
Publisher
Language
  • English  (7)
Years
  • 1
    Publication Date: 2022-01-03
    Description: Between early 2018 and late 2019 the STIMTEC hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project aimed at gaining insight into the creation and growth of fractures in anisotropic and heterogeneous metamorphic gneiss, to develop and optimise hydraulic stimulation techniques and to control the associated induced seismicity under in situ conditions at the mine-scale. These aspects of failure and associated seismicity are important for the development of enhanced geothermal energy systems. A combined seismic network consisted of 12 single-component acoustic emission sensors (sensitivity 1-100 kHz) and three single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz) were installed in boreholes drilled into the test volume, surrounding the stimulation site (Figure 1). A stimulation borehole with 63 m length was drilled with 15° northward inclination. This data set of 314 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2021), which introduces the STIMTEC experiment and its active measurement campaigns. This data set was used to derive an anisotropic velocity model for the STIMTEC rock volume. The active seismic data provided here are from six boreholes (BH09, BH10, BH12, BH15, BH16, BH17) as shown in Figure 1. of the associated data description. There are three tables provided as metadata that contain the STIMTEC sensor coordinates, event information of the 314 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci. Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTEC_UT_picks.csv.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: In 2018 and 2019, we performed STIMulation tests with characterising periodic pumping tests and high-resolution seismic monitoring for improving prognosis models and real-time monitoring TEChnologies for the creation of hydraulic conduits in crystalline rocks (STIMTEC). The STIMTEC underground research laboratory is located at 130 m depth in the Reiche Zeche mine in Freiberg, Germany. The experiment was designed to investigate the rock damage resulting from hydraulic stimulation and to link seismic activity and enhancement of hydraulic properties in strongly foliated metamorphic gneiss. We present results from active and passive seismic monitoring prior to and during hydraulic stimulations. We characterise the structural anisotropy and heterogeneity of the reservoir rocks at the STIMTEC site and the induced high-frequency (〉1 kHz) acoustic emission (AE) activity, associated with brittle deformation at the centimetre-to-decimetre scale. We derived the best velocity model per recording station from over 300 active ultrasonic transmission measurements for high-accuracy AE event location. The average P-wave anisotropy is 12 %, in agreement with values derived from laboratory tests on core material. We use a 16-station seismic monitoring network comprising AE sensors, accelerometers, one broadband sensor and one AE hydrophone. All instrumentation was removable, providing us with the flexibility to use existing boreholes for multiple purposes. This approach also allowed for optimising the (near)-real-time passive monitoring system during the experiment. To locate AE events, we tested the effect of different velocity models and inferred their location accuracy. Based on the known active ultrasonic transmission measurement points, we obtained an average relocation error of 0.26±0.06 m where the AE events occurred using a transverse isotropic velocity model per station. The uncertainty resulting from using a simplified velocity model increased to 0.5–2.6 m, depending on whether anisotropy was considered or not. Structural heterogeneity overprints anisotropy of the host rock and has a significant influence on velocity and attenuation, with up to 4 % and up to 50 % decrease on velocity and wave amplitude, respectively. Significant variations in seismic responses to stimulation were observed ranging from abundant AE events (several thousand per stimulated interval) to no activity with breakdown pressure values ranging between 6.4 and 15.6 MPa. Low-frequency seismic signals with varying amplitudes were observed for all stimulated intervals that are more correlated with the injection flow rate rather than the pressure curve. We discuss the observations from STIMTEC in context of similar experiments performed in underground research facilities to highlight the effect of small-scale rock, stress and structural heterogeneity and/or anisotropy observed at the decametre scale. The reservoir complexity at this scale supports our conclusion that field-scale experiments benefit from high-sensitivity, wide-bandwidth instrumentation and flexible monitoring approaches to adapt to unexpected challenges during all stages of the experiment.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: In this study we analyze the nano- and picoseismicity recorded during the Fatigue Hydraulic Fracturing (FHF) in situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment composed of six fractures driven by three different water injection schemes (continuous, progressive and pulse pressurization) was performed during the year 2015 inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz, including broadband seismometers, geophones, high frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of nearly 200 seismic events with moment magnitudes MW 〈 -4 that occurred solely during the hydraulic fracturing stages. We relocated the seismic catalog using double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensor). The derived physical characteristics of induced seismicity are compared with the stimulation parameters as well as with the geomechanical parameters of the site.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-13
    Description: We investigate the source characteristics of picoseismicity (Mw 〈 −2) recorded during a hydraulic fracturing in situ experiment performed in the underground Äspö Hard Rock Laboratory, Sweden. The experiment consisted of six stimulations driven by three different water injection schemes and was performed inside a 28‐m‐long, horizontal borehole located at 410‐m depth. The fracturing processes were monitored with a variety of seismic networks including broadband seismometers, geophones, high‐frequency accelerometers, and acoustic emission sensors thereby covering a wide frequency band between 0.01 and 100,000 Hz. Here we study the high‐frequency signals with dominant frequencies exceeding 1000 Hz. The combined seismic network allowed for detection and detailed analysis of 196 small‐scale seismic events with moment magnitudes MW 〈 −3.5 (source sizes of decimeter scale) that occurred solely during the stimulations and shortly after. The double‐difference relocated hypocenter catalog as well as source parameters were used to study the physical characteristics of the induced seismicity and then compared to the stimulation parameters. We observe a spatiotemporal migration of the picoseismic events away and toward the injection intervals in direct correlation with changes in the hydraulic energy (product of fluid injection pressure and injection rate). We find that the total radiated seismic energy is extremely low with respect to the product of injected fluid volume and pressure (hydraulic energy). The radiated seismic energy correlates well with the hydraulic energy rate. The obtained fault plane solutions for particularly well‐characterized events signify the reactivation of preexisting rock defects under influence of increased pore fluid pressure on fault plane orientations in good correspondence with the local stress field orientation.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-15
    Description: In 2020 and 2021 the STIMTEC-X hydraulic stimulation experiment was performed at ca.~130 m below surface at the Reiche Zeche underground research laboratory in Freiberg, Saxony/Germany. The project temporally followed the STIMTEC experiment at the same site and aimed at understanding the stress heterogeneity of the anisotropic and metamorphic gneiss rock mass. The STIMTEC-X experiment applied the hydraulic stimulation technique in several boreholes at the mine-scale. Complementary to the stimulations, there were active seismic ultrasonic transmission data acquired before the stimulations. We use a seismic monitoring network consisting of six single-component acoustic emission (AE) sensors (sensitivity 1-60 kHz), six hydrophone-like AE sensors (sensitivity 1-40 kHz) and four to twelve single-component Wilcoxon accelerometers (sensitivity 50 Hz-25 kHz). The AE sensors and remained stationary in sub-horizontal and upwards reaching boreholes, the accelerometers were mostly installed along the tunnel walls with one accelerometer in a shallow borehole in each tunnel, and the hydrophone-like AE sensors were installed in the down-going water filled boreholes, but repositioned for each measurement campaign (Figure 1). This data set of 120 active ultrasonic transmission (UT) measurements is supplementary to Boese et al. (2022, in review), which introduces some of the active measurement campaigns of the STIMTEC-X experiment in detail. The whole data set togetter with the “Ultrasonic transmission measurements from six boreholes from the STIMTEC experiment, Reiche Zeche Mine, Freiberg (Saxony, Germany)” [https://doi.org/10.5880/GFZ.4.2.2021.002] was used to evaluate performance measures such as sensitivity and frequency bandwith, coupling, placement and polarity of the hydrophone-like AE sensor compared to AE sensors. The active seismic data provided here are from seven boreholes (BH01, BH05, BH06, BH10, BH14, BH18, BH19) as shown in Figure 1. There are nine tables provided as metadata of which seven contain the STIMTEC-X sensor coordinates for each measurement campaign, the event information of all the 120 UT measurements and the UT picks. The UT measurements were recorded with a sampling rate of 1 MHz and results from an automatic stack of 1024 UT pulses generated by the ultrasonic transmitter and recorded by the STIMTEC-X sensors. The UT measurements are saved in binary file format (fsf file format). Fsf-files can be processed with FOCI software: https://www.induced.pl/software/foci. Each fsf file contains 32768 samples, which corresponds to 0.032768 seconds. All UT event files were manual inspected and phase arrivals identified. These are stored in the fsf-file header as well as in the table STIMTECX_UT_picks.csv.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-15
    Description: This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-15
    Description: In this article, a high-resolution acoustic emission sensor, accelerometer, and broadband seismometer array data set is made available and described in detail from in situ experiments performed at Äspö Hard Rock Laboratory in May and June 2015. The main goal of the hydraulic stimulation tests in a horizontal borehole at 410m depth in naturally fractured granitic rock mass is to demonstrate the technical feasibility of generating multi-stage heat exchangers in a controlled way superiorly to former massive stimulations applied in enhanced geothermal projects. A set of six, sub-parallel hydraulic fractures is propagated from an injection borehole drilled parallel to minimum horizontal in situ stress and is monitored by an extensive complementary sensor array implemented in three inclined monitoring boreholes and the nearby tunnel system. Three different fluid injection protocols are tested: constant water injection, progressive cyclic injection, and cyclic injection with a hydraulic hammer operating at 5 Hz frequency to stimulate a crystalline rock volume of size 30m30m30m at depth. We collected geological data from core and borehole logs, fracture inspection data from an impression packer, and acoustic emission hypocenter tracking and tilt data, as well as quantified the permeability enhancement process. The data and interpretation provided through this publication are important steps in both upscaling laboratory tests and downscaling field tests in granitic rock in the framework of enhanced geothermal system research. Data described in this paper can be accessed at GFZ Data Services under https://doi.org/10.5880/GFZ.2.6.2023.004 (Zang et al., 2023).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...